#ifndef __VCGLIB_LINALGEBRA_H #define __VCGLIB_LINALGEBRA_H #include namespace vcg { /** \addtogroup math */ /* @{ */ /*! * */ template< typename TYPE > static void JacobiRotate(Matrix44 &A, TYPE s, TYPE tau, int i,int j,int k,int l) { TYPE g=A[i][j]; TYPE h=A[k][l]; A[i][j]=g-s*(h+g*tau); A[k][l]=h+s*(g-h*tau); }; /*! * Computes all eigenvalues and eigenvectors of a real symmetric matrix . * On output, elements of the input matrix above the diagonal are destroyed. * \param d returns the eigenvalues of a. * \param v is a matrix whose columns contain, the normalized eigenvectors * \param nrot returns the number of Jacobi rotations that were required. */ template static void Jacobi(Matrix44 &w, Point4 &d, Matrix44 &v, int &nrot) { int j,iq,ip,i; //assert(w.IsSymmetric()); TYPE tresh, theta, tau, t, sm, s, h, g, c; Point4 b, z; v.SetIdentity(); for (ip=0;ip<4;++ip) //Initialize b and d to the diagonal of a. { b[ip]=d[ip]=w[ip][ip]; z[ip]=0.0; //This vector will accumulate terms of the form tapq as in equation (11.1.14). } nrot=0; for (i=0;i<50;i++) { sm=0.0; for (ip=0;ip<3;++ip) // Sum off diagonal elements { for (iq=ip+1;iq<4;++iq) sm += fabs(w[ip][iq]); } if (sm == 0.0) //The normal return, which relies on quadratic convergence to machine underflow. { return; } if (i < 4) tresh=0.2*sm/(4*4); //...on the first three sweeps. else tresh=0.0; //...thereafter. for (ip=0;ip<4-1;++ip) { for (iq=ip+1;iq<4;iq++) { g=100.0*fabs(w[ip][iq]); //After four sweeps, skip the rotation if the off-diagonal element is small. if(i>4 && (float)(fabs(d[ip])+g) == (float)fabs(d[ip]) && (float)(fabs(d[iq])+g) == (float)fabs(d[iq])) w[ip][iq]=0.0; else if (fabs(w[ip][iq]) > tresh) { h=d[iq]-d[ip]; if ((float)(fabs(h)+g) == (float)fabs(h)) t=(w[ip][iq])/h; //t =1/(2#) else { theta=0.5*h/(w[ip][iq]); //Equation (11.1.10). t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); if (theta < 0.0) t = -t; } c=1.0/sqrt(1+t*t); s=t*c; tau=s/(1.0+c); h=t*w[ip][iq]; z[ip] -= h; z[iq] += h; d[ip] -= h; d[iq] += h; w[ip][iq]=0.0; for (j=0;j<=ip-1;j++) { //Case of rotations 1 <= j < p. JacobiRotate(w,s,tau,j,ip,j,iq) ; } for (j=ip+1;j<=iq-1;j++) { //Case of rotations p < j < q. JacobiRotate(w,s,tau,ip,j,j,iq); } for (j=iq+1;j<4;j++) { //Case of rotations q< j <= n. JacobiRotate(w,s,tau,ip,j,iq,j); } for (j=0;j<4;j++) { JacobiRotate(v,s,tau,j,ip,j,iq); } ++nrot; } } } for (ip=0;ip<4;ip++) { b[ip] += z[ip]; d[ip]=b[ip]; //Update d with the sum of ta_pq , z[ip]=0.0; //and reinitialize z. } } }; // Computes (a^2 + b^2)^(1/2) without destructive underflow or overflow. template inline static TYPE pythagora(TYPE a, TYPE b) { TYPE abs_a = fabs(a); TYPE abs_b = fabs(b); if (abs_a > abs_b) return abs_a*sqrt(1.0+sqr(abs_b/abs_a)); else return (abs_b == 0.0 ? 0.0 : abs_b*sqrt(1.0+sqr(abs_a/abs_b))); }; template inline static TYPE sign(TYPE a, TYPE b) { return (b >= 0.0 ? fabs(a) : -fabs(a)); }; template inline static TYPE sqr(TYPE a) { TYPE sqr_arg = a; return (sqr_arg == 0 ? 0 : sqr_arg*sqr_arg); } /*! * Given a matrix Am×n, this routine computes its singular value decomposition, * i.e. A=U·W·VT. The matrix A will be destroyed! * (This is the implementation described in Numerical Recipies). * \param A the matrix to be decomposed * \param W the diagonal matrix of singular values W, stored as a vector W[1...N] * \param V the matrix V (not the transpose VT) * \param max_iters max iteration number (default = 30). * \return */ template static bool SingularValueDecomposition(MATRIX_TYPE &A, typename MATRIX_TYPE::ScalarType *W, MATRIX_TYPE &V, const int max_iters = 30) { typedef typename MATRIX_TYPE::ScalarType ScalarType; int m = (int) A.RowsNumber(); int n = (int) A.ColumnsNumber(); int flag,i,its,j,jj,k,l,nm; double anorm, c, f, g, h, s, scale, x, y, z, *rv1; bool convergence = true; rv1 = new double[n]; g = scale = anorm = 0; // Householder reduction to bidiagonal form. for (i=0; i( sqrt(s), f ); h = f*g - s; A[i][i]=f-g; for (j=l; j(sqrt(s),f); h = f*g - s; A[i][l] = f-g; for (k=l; k=0; i--) { //Accumulation of right-hand transformations. if (i < (n-1)) { if (g) { for (j=l; j=0; i--) { l = i+1; g = W[i]; for (j=l; j=0; k--) { for (its=1; its<=max_iters; its++) { flag=1; for (l=k; l>=0; l--) { // Test for splitting. nm=l-1; // Note that rv1[1] is always zero. if ((double)(fabs(rv1[l])+anorm) == anorm) { flag=0; break; } if ((double)(fabs(W[nm])+anorm) == anorm) break; } if (flag) { c=0.0; //Cancellation of rv1[l], if l > 1. s=1.0; for (i=l ;i<=k; i++) { f = s*rv1[i]; rv1[i] = c*rv1[i]; if ((double)(fabs(f)+anorm) == anorm) break; g = W[i]; h = pythagora(f,g); W[i] = h; h = 1.0/h; c = g*h; s = -f*h; for (j=0; j(f,1.0); f=((x-z)*(x+z) + h*((y/(f+sign(g,f)))-h))/x; c=s=1.0; //Next QR transformation: for (j=l; j<= nm;j++) { i = j+1; g = rv1[i]; y = W[i]; h = s*g; g = c*g; z = pythagora(f,h); rv1[j] = z; c = f/z; s = h/z; f = x*c + g*s; g = g*c - x*s; h = y*s; y *= c; for (jj=0; jj(f,h); W[j] = z; // Rotation can be arbitrary if z = 0. if (z) { z = 1.0/z; c = f*z; s = h*z; } f = c*g + s*y; x = c*y - s*g; for (jj=0; jjUm×n, * Wn×1 and Vn×n as returned by SingularValueDecomposition. * No input quantities are destroyed, so the routine may be called sequentially with different b’s. * \param x is the output solution vector (xn×1) * \param b is the input right-hand side (bn×1) */ template static void SingularValueBacksubstitution(const MATRIX_TYPE &U, const typename MATRIX_TYPE::ScalarType *W, const MATRIX_TYPE &V, typename MATRIX_TYPE::ScalarType *x, const typename MATRIX_TYPE::ScalarType *b) { typedef typename MATRIX_TYPE::ScalarType ScalarType; unsigned int jj, j, i; ScalarType s; ScalarType *tmp = new ScalarType[U.ColumnsNumber()]; for (j=0; j