/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_RectPacker__ #define __VCG_RectPacker__ #include #include #include #include #include #include #include namespace vcg { template class RectPacker { typedef typename vcg::Box2 Box2x; typedef typename vcg::Point2 Point2x; typedef typename vcg::Similarity2 Similarity2x; public: class Stat { public: void clear() { pack_attempt_num=0; pack_attempt_time=0; pack_total_time=0; } int pack_attempt_num; float pack_attempt_time; float pack_total_time; }; static Stat &stat() { static Stat _s; return _s; } static bool Pack(const std::vector & rectVec, /// the set of rectangles that have to be packed (generic floats, no req.) const Point2i containerSizeX, /// the size of the container where they has to be fitted (usually in pixel size) std::vector &trVec, /// the result, a set of similarity transformation that have to be applied to the rect to get their position Point2x &coveredContainer) /// the sub portion of the container covered by the solution. { float bestOccupancy=0,currOccupancy=0.1f; std::vector currTrVec; Point2x currCovered; int start_t=clock(); stat().clear(); bool ret=true; while(ret) { stat().pack_attempt_num++; int t0=clock(); ret=PackOccupancy(rectVec,containerSizeX,currOccupancy,currTrVec,currCovered); stat().pack_attempt_time = float(clock()-t0)/float(CLOCKS_PER_SEC); if(ret) { assert(currOccupancy>bestOccupancy); bestOccupancy = currOccupancy; trVec=currTrVec; coveredContainer=currCovered; currOccupancy = (2.0*currOccupancy+1.0)/3.0; } } stat().pack_total_time=float(clock()-start_t)/float(CLOCKS_PER_SEC);; if(bestOccupancy>0) return true; return false; } static bool PackOccupancy(const std::vector & rectVec, /// the set of rectangles that have to be packed const Point2i containerSizeX, /// the size of the container where they has to be fitted (usually in pixel size) const SCALAR_TYPE occupancyRatio, /// the expected percentage of the container that has to be covered std::vector &trVec, /// the result, a set of similarity transformation that have to be applied to the rect to get their position Point2x &coveredContainer) /// the sub portion of the container covered by the solution. { Point2x maxSize(0,0); const vcg::Point2i containerSize=Point2i::Construct(containerSizeX); SCALAR_TYPE areaSum=0; SCALAR_TYPE areaContainer = containerSize[0]*containerSize[1]; for (size_t i=0;i sizes(rectVec.size()); for (size_t i=0;i posiz; vcg::Point2i global_size; bool res = PackInt(sizes,containerSize,posiz,global_size); if(!res) return false; trVec.resize(rectVec.size()); for (size_t i=0;i & rectVec, /// the set of rectangles that have to be packed (generic floats, no req.) const Point2i containerSizeI, /// the size of the container where they has to be fitted (usually in pixel size) const int containerNum, std::vector &trVec, /// the result, a set of similarity transformation that have to be applied to the rect to get their position std::vector &indVec, std::vector &coveredContainer) /// the sub portion of the container covered by the solution. { float bestOccupancy=0,currOccupancy=0.1f; std::vector currTrVec; std::vector currIndVec; std::vector currCovered; int start_t=clock(); stat().clear(); bool ret=true; while(ret && bestOccupancy < 0.99f) { stat().pack_attempt_num++; int t0=clock(); ret=PackOccupancyMulti(rectVec,containerSizeI,containerNum,currOccupancy,currTrVec, currIndVec, currCovered); stat().pack_attempt_time = float(clock()-t0)/float(CLOCKS_PER_SEC); if(ret) { printf("CurrOccupancy %f\n",currOccupancy); assert(currOccupancy>bestOccupancy); bestOccupancy = currOccupancy; trVec=currTrVec; indVec=currIndVec; coveredContainer=currCovered; currOccupancy = (2.0*currOccupancy+1.0)/3.0; } } stat().pack_total_time=float(clock()-start_t)/float(CLOCKS_PER_SEC);; if(bestOccupancy>0) return true; return false; } static bool PackOccupancyMulti(const std::vector & rectVec, /// the set of rectangles that have to be packed const Point2i containerSizeX, /// the size of the container where they has to be fitted (usually in pixel size) const int containerNum, const SCALAR_TYPE occupancyRatio, /// the expected percentage of the container that has to be covered std::vector &trVec, /// the result, a set of similarity transformation that have to be applied to the rect to get their position std::vector &indVec, std::vector &coveredContainer) /// the sub portion of the container covered by the solution. { Point2x maxSize(0,0); const vcg::Point2i containerSize=Point2i::Construct(containerSizeX); SCALAR_TYPE areaSum=0; SCALAR_TYPE areaContainer = containerSize[0]*containerSize[1]*containerNum; for (size_t i=0;i sizes(rectVec.size()); for (size_t i=0;i posiz; std::vector global_sizeVec; bool res = PackIntMulti(sizes,containerNum,containerSize,posiz,indVec,global_sizeVec); if(!res) return false; trVec.resize(rectVec.size()); for (size_t i=0;i & v; inline ComparisonFunctor( const std::vector & nv ) : v(nv) { } inline bool operator() ( int a, int b ) { const Point2i &va=v[a]; const Point2i &vb=v[b]; return (va[1]!=vb[1])?(va[1]>vb[1]): (va[0]>vb[0]); } }; /* This is the low level function that packs a set of int rects onto a grid. Based on the criptic code written by Claudio Rocchini Greedy algorithm. Sort the rect according their height (larger first) and then place them in the position that minimize the area of the bbox of all the placed rectangles To efficiently skip occupied areas it fills the grid with the id of the already placed rectangles. */ static bool PackInt(const std::vector & sizes, // the sizes of the rect to be packed const vcg::Point2i & max_size, // the size of the container std::vector & posiz, // the found positionsof each rect vcg::Point2i & global_size) // the size of smallest rect covering all the packed rect { int n = (int)(sizes.size()); assert(n>0 && max_size[0]>0 && max_size[1]>0); int gridSize = max_size[0]*max_size[1]; // Size dell griglia int i,j,x,y; posiz.resize(n,Point2i(-1,-1)); std::vector grid(gridSize,0); // Creazione griglia #define Grid(q,w) (grid[(q)+(w)*max_size[0]]) // Build a permutation that keeps the reordiering of the sizes vector according to their width std::vector perm(n); for(i=0;imax_size[0] || sizes[perm[0]][1]>max_size[1] ) return false; // Posiziono il primo j = perm[0]; global_size = sizes[j]; posiz[j] = Point2i(0,0); // Fill the grid with the id(+1) of the first for(y=0;y=0 && x=0 && y=0 && j0 && sy>0); // Calcolo la posizione limite int lx = std::min(global_size[0],max_size[0]-sx); int ly = std::min(global_size[1],max_size[1]-sy); assert(lx>0 && ly>0); int finterior = 0; for(y=0;y<=ly;y++) { for(x=0;x<=lx;) { int px; int c = Grid(x,y+sy-1); // Intersection check if(!c) c = Grid(x+sx-1,y+sy-1); if(!c) { for(px=x;px=0 && carea) { bestx = x; besty = y; bestsx = nsx; bestsy = nsy; bestArea = area; if( bestsx==global_size[0] && bestsy==global_size[1] ) finterior = 1; } break; } if(finterior) break; } if( finterior ) break; } if(bestArea==-1) { return false; } posiz[j][0] = bestx; posiz[j][1] = besty; global_size[0] = bestsx; global_size[1] = bestsy; for(y=posiz[j][1];y=0 && x=0 && y & sizes, const int ntexture, const vcg::Point2i & max_size, std::vector & posiz, std::vector & texin, std::vector & globalsize ) { int n = sizes.size(); assert(n>0); assert(max_size[0]>0); assert(max_size[1]>0); int gdim = max_size[0]*max_size[1]; // Size dell griglia int i,j,k,x,y; globalsize.resize(ntexture); // creazione globalsize posiz.resize(n); texin.resize(n); for(i=0;i > grid; // Creazione griglie grid.resize(ntexture); for(k=0;k perm(n); // Creazione permutazione for(i=0;imax_size[0] || // Un pezzo piu' grosso del contenitore sizes[perm[0]].Y()>max_size[1] ) return false; if(n=0); assert(x=0); assert(y=0); assert(j0); assert(sy>0); int gbestx,gbesty,gbestsx,gbestsy,gbestk; int gbesta = -1; for(k=0;k0); assert(ly>0); int finterior = 0; for(y=0;y<=ly;y++) { for(x=0;x<=lx;) { int px; int c; // Controllo intersezione c = Grid(k,x,y+sy-1); if(!c) c = Grid(k,x+sx-1,y+sy-1); if(!c) { for(px=x;px=0); assert(ca) { bestx = x; besty = y; bestsx = nsx; bestsy = nsy; besta = a; if( bestsx==globalsize[k].X() && bestsy==globalsize[k].Y() ) finterior = 1; } break; } if(finterior) break; } if( finterior ) break; } if(besta==-1) continue; // non c'e' spazio besta -= starta; if(gbesta==-1 || gbesta>besta) { gbesta = besta; gbestx = bestx; gbesty = besty; gbestsx = bestsx; gbestsy = bestsy; gbestk = k; } } if(gbesta==-1) { return false; } assert(gbestx>=0); assert(gbesty>=0); assert(gbestk>=0); assert(gbestx<=max_size[0]); assert(gbesty<=max_size[1]); assert(gbestk=0); assert(x=0); assert(y