/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_VERTEX_PLUS_COMPONENT #define __VCG_VERTEX_PLUS_COMPONENT #include #include #include #include #include namespace vcg { namespace vertex { /* Some naming Rules All the Components that can be added to a vertex should be defined in the namespace vert: */ /*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/ template class EmptyCore: public TT { public: typedef int FlagType; int &Flags() { static int dummyflags(0); assert(0); return dummyflags; } int Flags() const { return 0; } static bool HasFlags() { return false; } typedef vcg::Point3f CoordType; typedef CoordType::ScalarType ScalarType; CoordType &P() { static CoordType coord(0, 0, 0); return coord; } const CoordType &P() const { static CoordType coord(0, 0, 0); assert(0); return coord; } const CoordType &cP() const { static CoordType coord(0, 0, 0); assert(0); return coord; } static bool HasCoord() { return false; } typedef vcg::Point3s NormalType; NormalType &N() { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; } const NormalType cN()const { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; } static bool HasNormal() { return false; } static bool HasNormalOcf() { return false; } typedef float QualityType; QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; } const QualityType &cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; } static bool HasQuality() { return false; } static bool HasQualityOcf() { return false; } static bool IsQualityEnabled(const typename TT::VertType *) { return false; } typedef vcg::Color4b ColorType; ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } const ColorType &cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } static bool HasColor() { return false; } static bool HasColorOcf() { return false; } static bool IsColorEnabled(const typename TT::VertType *) { return false; } inline void InitIMark() { } inline const int & cIMark() const { assert(0); static int tmp=-1; return tmp;} inline int & IMark() { assert(0); static int tmp=-1; return tmp;} inline int IMark() const {return 0;} static bool HasMark() { return false; } static bool HasMarkOcf() { return false; } static bool IsMarkEnabled(const typename TT::VertType *) { return false; } typedef ScalarType RadiusType; RadiusType &R(){ static ScalarType v = 0.0; assert(0 && "the radius component is not available"); return v; } const RadiusType &cR() const { static const ScalarType v = 0.0; assert(0 && "the radius component is not available"); return v; } static bool HasRadius() { return false; } static bool HasRadiusOcf() { return false; } static bool IsRadiusEnabled(const typename TT::VertType *) { return false; } typedef vcg::TexCoord2 TexCoordType; TexCoordType &T() { static TexCoordType dummy_texcoord; assert(0); return dummy_texcoord; } const TexCoordType &cT() const { static TexCoordType dummy_texcoord; assert(0); return dummy_texcoord; } static bool HasTexCoord() { return false; } static bool IsTexCoordEnabled(const typename TT::VertType *) { return false; } typename TT::TetraPointer &VTp() { static typename TT::TetraPointer tp = 0; assert(0); return tp; } typename TT::TetraPointer cVTp() { static typename TT::TetraPointer tp = 0; assert(0); return tp; } int &VTi() { static int z = 0; return z; }; static bool HasVTAdjacency() { return false; } typename TT::FacePointer &VFp() { static typename TT::FacePointer fp=0; assert(0); return fp; } typename TT::FacePointer cVFp() const { static typename TT::FacePointer fp=0; assert(0); return fp; } int &VFi(){static int z=0; return z;}; int cVFi() const {static int z=0; return z;}; static bool HasVFAdjacency() { return false; } typename TT::EdgePointer &VEp() { static typename TT::EdgePointer ep=0; assert(0); return ep; } typename TT::EdgePointer cVEp() { static typename TT::EdgePointer ep=0; assert(0); return ep; } int &VEi(){static int z=0; return z;}; static bool HasVEAdjacency() { return false; } typedef Point3f VecType; float &Kh() { static float dummy = 0.f; assert(0);return dummy;} float &Kg() { static float dummy = 0.f; assert(0);return dummy;} const float &cKh() const { static float dummy = 0.f; assert(0); return dummy;} const float &cKg() const { static float dummy = 0.f; assert(0); return dummy;} VecType &PD1(){static VecType v(0,0,0); assert(0);return v;} VecType &PD2(){static VecType v(0,0,0); assert(0);return v;} const VecType &cPD1() const {static VecType v(0,0,0); assert(0);return v;} const VecType &cPD2() const {static VecType v(0,0,0); assert(0);return v;} ScalarType &K1(){ static ScalarType v = 0.0;assert(0);return v;} ScalarType &K2(){ static ScalarType v = 0.0;assert(0);return v;} const ScalarType &cK1() const {static ScalarType v = 0.0;assert(0);return v;} const ScalarType &cK2()const {static ScalarType v = 0.0;assert(0);return v;} static bool HasCurvature() { return false; } static bool IsCurvatureEnabled(const typename TT::VertType *) { return false; } static bool HasCurvatureDir() { return false; } static bool IsCurvatureDirEnabled(const typename TT::VertType *) { return false; } template < class LeftV> void ImportLocal(const LeftV & left ) { TT::ImportLocal( left); } static void Name(std::vector & name){TT::Name(name);} }; /*-------------------------- COORD ----------------------------------------*/ template class Coord: public T { public: typedef A CoordType; typedef typename CoordType::ScalarType ScalarType; CoordType &P() { return _coord; } const CoordType &P() const { return _coord; } const CoordType &cP() const { return _coord; } template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasCoord()) P().Import(left.cP()); T::ImportLocal( left); } static bool HasCoord() { return true; } static void Name(std::vector & name){name.push_back(std::string("Coord"));T::Name(name);} private: CoordType _coord; }; template class Coord3f: public Coord { public: static void Name(std::vector & name){name.push_back(std::string("Coord3f"));T::Name(name);} }; template class Coord3d: public Coord { public: static void Name(std::vector & name){name.push_back(std::string("Coord3d"));T::Name(name);} }; /*-------------------------- NORMAL ----------------------------------------*/ template class Normal: public T { public: typedef A NormalType; NormalType &N() { return _norm; } const NormalType &cN() const { return _norm; } template < class LeftV> void ImportLocal(const LeftV & left ){ if(LeftV::HasNormal()) N().Import(left.cN()); T::ImportLocal( left); } static bool HasNormal() { return true; } // static bool HasNormalOcf() { return false; } static void Name(std::vector & name){name.push_back(std::string("Normal"));T::Name(name);} private: NormalType _norm; }; template class Normal3s: public Normal { public:static void Name(std::vector & name){name.push_back(std::string("Normal3s"));T::Name(name);} }; template class Normal3f: public Normal { public: static void Name(std::vector & name){name.push_back(std::string("Normal3f"));T::Name(name);} }; template class Normal3d: public Normal { public: static void Name(std::vector & name){name.push_back(std::string("Normal3d"));T::Name(name);} }; /*-------------------------- INCREMENTAL MARK ----------------------------------------*/ template class Mark: public T { public: static bool HasMark() { return true; } static bool HasMarkOcc() { return true; } inline void InitIMark() { _imark = 0; } inline const int & cIMark() const { return _imark;} inline int & IMark() { return _imark;} inline const int & IMark() const {return _imark;} template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasMark()) IMark() = left.IMark(); T::ImportLocal( left); } static void Name(std::vector & name){name.push_back(std::string("Mark"));T::Name(name);} private: int _imark; }; /*-------------------------- TEXCOORD ----------------------------------------*/ template class TexCoord: public TT { public: typedef A TexCoordType; TexCoordType &T() { return _t; } const TexCoordType &cT() const { return _t; } template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasTexCoord()) T() = left.cT(); TT::ImportLocal( left); } static bool HasTexCoord() { return true; } static void Name(std::vector & name){name.push_back(std::string("TexCoord"));TT::Name(name);} private: TexCoordType _t; }; template class TexCoord2s: public TexCoord, TT> { public: static void Name(std::vector & name){name.push_back(std::string("TexCoord2s"));TT::Name(name);} }; template class TexCoord2f: public TexCoord, TT> { public: static void Name(std::vector & name){name.push_back(std::string("TexCoord2f"));TT::Name(name);} }; template class TexCoord2d: public TexCoord, TT> { public: static void Name(std::vector & name){name.push_back(std::string("TexCoord2d"));TT::Name(name);} }; /*------------------------- FLAGS -----------------------------------------*/ template class BitFlags: public T { public: BitFlags(){_flags=0;} typedef int FlagType; int &Flags() {return _flags; } int Flags() const {return _flags; } template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasFlags()) Flags() = left.Flags(); T::ImportLocal( left); } static bool HasFlags() { return true; } static void Name(std::vector & name){name.push_back(std::string("BitFlags"));T::Name(name);} private: int _flags; }; /*-------------------------- Color ----------------------------------*/ template class Color: public T { public: Color():_color(vcg::Color4b::White) {} typedef A ColorType; ColorType &C() { return _color; } const ColorType &C() const { return _color; } const ColorType &cC() const { return _color; } template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasColor()) C() = left.cC(); T::ImportLocal( left); } static bool HasColor() { return true; } static bool IsColorEnabled(typename T::VertType *) { return true; } static void Name(std::vector & name){name.push_back(std::string("Color"));T::Name(name);} private: ColorType _color; }; template class Color4b: public Color { public: static void Name(std::vector & name){name.push_back(std::string("Color4b"));TT::Name(name);} }; /*-------------------------- Quality ----------------------------------*/ template class Quality: public TT { public: typedef A QualityType; QualityType &Q() { return _quality; } const QualityType & cQ() const {return _quality; } template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasQuality()) Q() = left.cQ(); TT::ImportLocal( left); } static bool HasQuality() { return true; } static void Name(std::vector & name){name.push_back(std::string("Quality"));TT::Name(name);} private: QualityType _quality; }; template class Qualitys: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualitys"));TT::Name(name);} }; template class Qualityf: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityf"));TT::Name(name);} }; template class Qualityd: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityd"));TT::Name(name);} }; template struct CurvatureDirBaseType{ typedef Point3 VecType; typedef S ScalarType; CurvatureDirBaseType () {} Point3max_dir,min_dir; // max and min curvature direction S k1,k2;// max and min curvature values }; template class Curvature: public TT { public: typedef Point2 CurvatureType; typedef typename CurvatureType::ScalarType ScalarType; ScalarType &Kh(){ return _hk[0];} ScalarType &Kg(){ return _hk[1];} const ScalarType &cKh() const { return _hk[0];} const ScalarType &cKg() const { return _hk[1];} static bool HasCurvature() { return true; } static bool IsCurvatureEnabled(typename TT::VertType *) { return true; } static void Name(std::vector & name){name.push_back(std::string("Curvature"));TT::Name(name);} private: Point2 _hk; }; template class Curvaturef: public Curvature< float, T> { public: static void Name(std::vector & name){name.push_back(std::string("Curvaturef"));T::Name(name);} }; template class Curvatured: public Curvature { public: static void Name(std::vector & name){name.push_back(std::string("Curvatured"));T::Name(name);} }; /*-------------------------- Curvature Direction ----------------------------------*/ template class EmptyCurvatureDir: public TT { public: typedef CurvatureDirBaseType CurvatureDirType; Point3f &PD1(){static Point3f dummy(0,0,0); return dummy;} Point3f &PD2(){static Point3f dummy(0,0,0); return dummy;} const Point3f &cPD1() const {static Point3f dummy(0,0,0); return dummy;} const Point3f &cPD2()const {static Point3f dummy(0,0,0); return dummy;} float &K1(){ static float dummy(0);assert(0);return dummy;} float &K2(){ static float dummy(0);assert(0);return dummy;} const float &cK1()const { static float dummy(0);assert(0);return dummy;} const float &cK2()const { static float dummy(0);assert(0);return dummy;} static bool HasCurvatureDir() { return false; } template < class LeftV> void ImportLocal(const LeftV & left ) { TT::ImportLocal( left); } static void Name(std::vector & name){TT::Name(name);} }; template class CurvatureDir: public TT { public: typedef A CurvatureDirType; typedef typename CurvatureDirType::VecType VecType; typedef typename CurvatureDirType::ScalarType ScalarType; VecType &PD1(){ return _curv.max_dir;} VecType &PD2(){ return _curv.min_dir;} const VecType &cPD1() const {return _curv.max_dir;} const VecType &cPD2() const {return _curv.min_dir;} ScalarType &K1(){ return _curv.k1;} ScalarType &K2(){ return _curv.k2;} const ScalarType &cK1() const {return _curv.k1;} const ScalarType &cK2()const {return _curv.k2;} static bool HasCurvatureDir() { return true; } static void Name(std::vector & name){name.push_back(std::string("CurvatureDir"));TT::Name(name);} private: CurvatureDirType _curv; }; template class CurvatureDirf: public CurvatureDir, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirf"));T::Name(name);} }; template class CurvatureDird: public CurvatureDir, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDird"));T::Name(name);} }; /*-------------------------- Radius ----------------------------------*/ template class Radius: public TT { public: typedef A RadiusType; RadiusType &R() { return _radius; } const RadiusType & cR() const {return _radius; } template < class LeftV> void ImportLocal(const LeftV & left ) { if(LeftV::HasRadius()) R() = left.cR(); TT::ImportLocal( left); } static bool HasRadius() { return true; } static void Name(std::vector & name){name.push_back(std::string("Radius"));TT::Name(name);} private: RadiusType _radius; }; template class Radiusf: public Radius { public: static void Name(std::vector & name){name.push_back(std::string("Radiusf"));TT::Name(name);} }; /*----------------------------- VEADJ ------------------------------*/ template class VEAdj: public T { public: VEAdj(){_ep=0;} typename T::EdgePointer &VEp() {return _ep; } typename T::EdgePointer cVEp() {return _ep; } int &VEi() {return _zp; } template < class LeftV> void ImportLocal(const LeftV & left ) { VEp() = NULL; T::ImportLocal( left); } static bool HasVEAdjacency() { return true; } static bool HasVEAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("VEAdj"));T::Name(name);} private: typename T::EdgePointer _ep ; int _zp ; }; /*----------------------------- VFADJ ------------------------------*/ template class VFAdj: public T { public: VFAdj(){_fp=0;} typename T::FacePointer &VFp() {return _fp; } typename T::FacePointer cVFp() {return _fp; } int &VFi() {return _zp; } template < class LeftV> void ImportLocal(const LeftV & left ) { VFp() = NULL; T::ImportLocal( left); } static bool HasVFAdjacency() { return true; } static bool HasVFAdjacencyOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("VFAdj"));T::Name(name);} private: typename T::FacePointer _fp ; int _zp ; }; /*----------------------------- VTADJ ------------------------------*/ template class VTAdj: public T { public: VTAdj() { _tp = 0; } typename T::TetraPointer &VTp() { return _tp; } typename T::TetraPointer cVTp() { return _tp; } int &VTi() {return _zp; } static bool HasVTAdjacency() { return true; } static bool HasVTAdjacencyOcc() { return true; } static void Name( std::vector< std::string > & name ) { name.push_back( std::string("VTAdj") ); T::Name(name); } private: typename T::TetraPointer _tp ; int _zp ; }; } // end namespace vert }// end namespace vcg #endif