/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History ****************************************************************************/ #ifndef __VCG_TETRA_POS #define __VCG_TETRA_POS namespace vcg { namespace tetra { /** \addtogroup tetra */ /*@{*/ /** Class VTIterator. This is a vertex - tetrahedron iterator @param MTTYPE (Template Parameter) Specifies the type of the tetrahedron. */ template < class MTTYPE> class VTIterator { public: /// The tetrahedron type typedef MTTYPE TetraType; private: /// Pointer to a tetrahedron TetraType *_vt; /// Index of one vertex int _vi; /// Default Constructor public: VTIterator(){} /// Constructor which associates the EdgePos elementet with a face and its edge VTIterator(TetraType * const tp, int const zp) { _vt=tp; _vi=zp; } ~VTIterator(){}; /// Return the tetrahedron stored in the half edge inline TetraType* & Vt() { return _vt; } /// Return the index of vertex as seen from the tetrahedron inline int & Vi() { return _vi; } /// Return the index of vertex as seen from the tetrahedron inline const int & Vi() const { return _vi; } inline bool End(){return (Vt()==NULL);} /// move on the next tetrahedron that share the vertex void operator++() { int vi=Vi(); TetraType * tw = Vt(); Vt() = tw->TVp(vi); Vi() = tw->TVi(vi); assert((Vt()==NULL)||((tw->V(vi))==(Vt()->V(Vi())))); } }; /** Templated over the class tetrahedron, it stores a \em position over a tetrahedron in a mesh. It contain a pointer to the current tetrahedron, the index of one face,edge and a edge's incident vertex. */ template < class MTTYPE> class Pos { public: /// The tetrahedron type typedef MTTYPE TetraType; /// The vertex type typedef typename TetraType::VertexType VertexType; /// The coordinate type typedef typename TetraType::VertexType::CoordType CoordType; ///The HEdgePos type typedef Pos<TetraType> BasePosType; private: /// Pointer to the tetrahedron of the half-edge TetraType *_t; /// Index of the face char _f; /// Index of the edge char _e; /// Pointer to the vertex char _v; public: /// Default constructor Pos(){SetNull();}; /// Constructor which associates the half-edge elementet with a face, its edge and its vertex Pos(TetraType * const tp, char const fap,char const ep, char const vp){_t=tp;_f=fap;_e=ep;_v=vp;} ~Pos(){}; /// Return the tetrahedron stored in the half edge inline TetraType* & T() { return _t; } /// Return the tetrahedron stored in the half edge inline TetraType* const & T() const { return _t; } /// Return the index of face as seen from the tetrahedron inline char & F() { return _f; } /// Return the index of face as seen from the tetrahedron inline const char & F() const { return _f; } /// Return the index of face as seen from the tetrahedron inline char & E() { return _e; } /// Return the index of face as seen from the tetrahedron inline const char & E() const { return _e; } /// Return the index of vertex as seen from the tetrahedron inline char & V() { return _v; } /// Return the index of vertex as seen from the tetrahedron inline const char & V() const { return _v; } /// Operator to compare two half-edge inline bool operator == ( BasePosType const & p ) const { return (T()==p.T() && F()==p.F() && E==p.E() && V==p.V()); } /// Operator to compare two half-edge inline bool operator != ( BasePosType const & p ) const { return (!((*this)==p)); } /// Set to null the half-edge void SetNull(){ T()=0; F()=-1; E()=-1; V()=-1; } /// Check if the half-edge is null bool IsNull() const { return ((T()==0) || (F()<0) || (E()<0) || (V()<0)); } /// Changes edge maintaining the same face and the same vertex void FlipE() { //take the absolute index of the tree edges of the faces char e0=vcg::Tetra::EofF(_f ,0); char e1=vcg::Tetra::EofF(_f ,1); char e2=vcg::Tetra::EofF(_f ,2); //eliminate the same as himself if (e0==E()) { e0=e1; e1=e2; } else if (e1==E()) { e1=e2; } //now choose the one that preserve the same vertex if ((vcg::Tetra::VofE(e1,0)==V())||(vcg::Tetra::VofE(e1,1)==V())) E()=e1; else E()=e0; } /// Changes vertex maintaining the same face and the same edge void FlipV() { // in the same edge choose the one that change char v0=vcg::Tetra::VofE(E(),0); char v1=vcg::Tetra::VofE(E(),1); if (v0!=V()) V()=v0; else V()=v1; } /// Changes face maintaining the same vertex and the same edge void FlipF() { char f0=vcg::Tetra::FofE(E(),0); char f1=vcg::Tetra::FofE(E(),1); if (f0!=F()) F()=f0; else F()=f1; } /// Changes tetrahedron maintaining the same face edge and vertex'... to finish void FlipT() { //save the two vertices of the old edge VertexType *v0=T()->V(vcg::Tetra::VofE(E(),0)); VertexType *v1=T()->V(vcg::Tetra::VofE(E(),1)); //get the current vertex VertexType *vcurr=T()->V(V()); //get new tetrahedron according to faceto face topology TetraType *nt=T()->TTp(F()); char nfa=T()->TTi(F()); if (nfa!=-1) { //find the right edge char ne0=vcg::Tetra::EofF(nfa,0); char ne1=vcg::Tetra::EofF(nfa,1); char ne2=vcg::Tetra::EofF(nfa,2); //the vertices of new edges VertexType *vn0=nt->V(vcg::Tetra::VofE(ne0,0)); VertexType *vn1=nt->V(vcg::Tetra::VofE(ne0,1)); //verify that the two vertices of tetrahedron are identical if (((vn0==v0)&&(vn1==v1))||((vn1==v0)&&(vn0==v1))) E()=ne0; else { vn0=nt->V(vcg::Tetra::VofE(ne1,0)); vn1=nt->V(vcg::Tetra::VofE(ne1,1)); if (((vn0==v0)&&(vn1==v1))||((vn1==v0)&&(vn0==v1))) E()=ne1; else { #ifdef _DEBUG vn0=nt->V(vcg::Tetra::VofE(ne2,0)); vn1=nt->V(vcg::Tetra::VofE(ne2,1)); assert(((vn0==v0)&&(vn1==v1))||((vn1==v0)&&(vn0==v1))); #endif E()=ne2; } } //find the right vertex vn0=nt->V(vcg::Tetra::VofE(E(),0)); #ifdef _DEBUG vn1=nt->V(vcg::Tetra::VofE(E(),1)); assert((vn0==vcurr)||(vn1==vcurr)); #endif if (vn0==vcurr) V()=vcg::Tetra::VofE(E(),0); else V()=vcg::Tetra::VofE(E(),1); T()=nt; assert(T()->V(V())==vcurr); F()=nfa; } } ///returns the next half edge on the same edge void NextT( ) { #ifdef _DEBUG VertexType *vold=T()->V(V()); #endif FlipT(); FlipF(); #ifdef _DEBUG VertexType *vnew=T()->V(V()); assert(vold==vnew); #endif } void Assert() #ifdef _DEBUG { HETYPE ht=*this; ht.FlipT(); ht.FlipT(); assert(ht==*this); ht=*this; ht.FlipF(); ht.FlipF(); assert(ht==*this); ht=*this; ht.FlipE(); ht.FlipE(); assert(ht==*this); ht=*this; ht.FlipV(); ht.FlipV(); assert(ht==*this); } #else {} #endif }; ///this pos structure jump on next tetrahedron if find an external face template < class MTTYPE> class PosJump:public Pos<MTTYPE> { private: MTTYPE *_t_initial; short int _back; public : typedef MTTYPE TetraType; PosJump(const TetraType* tp,const int fap,const int ep, int vp){this->T()=tp;this->F()=fap;this->E()=ep;this->V()=vp;_t_initial=tp;_back=0;} void NextT() { #ifdef _DEBUG int cont=0; #endif MTTYPE *tpred=this->T(); Pos<MTTYPE>::NextT(); //external face if (tpred==this->T()) { while (this->T()!=_t_initial) { Pos<MTTYPE>::NextT(); #ifdef _DEBUG cont++; assert (cont<500); #endif } _back++; if (_back==1) { Pos<MTTYPE>::NextT(); } } } }; ///this pos structure jump on next tetrahedron in rotational sense if find an external face template < class MTTYPE> class PosLoop:public Pos<MTTYPE> { private: MTTYPE *_t_initial; bool _jump; bool _loop; public : typedef MTTYPE TetraType; PosLoop(TetraType* tp,const int fap,const int ep, int vp){this->T()=tp;this->F()=fap;this->E()=ep;this->V()=vp;_t_initial=tp;_jump=false;_loop=false;} bool LoopEnd() { return (_loop); } bool Jump() { return(_jump); } void Reset() { _loop=false; _jump=false; } void NextT() { #ifdef _DEBUG TetraType *t_old=this->T(); #endif TetraType *tpred=this->T(); Pos<TetraType>::NextT(); _loop=false; _jump=false; //external face if (tpred==this->T()) { tpred=this->T(); //jump next one Pos<TetraType>::NextT(); //find the next external face while (tpred!=this->T()) { tpred=this->T(); Pos<TetraType>::NextT(); } ////reset right rotation sense // Pos<TetraType>::NextT(); _jump=true; } if (this->T()==_t_initial) _loop=true; #ifdef _DEBUG if (_loop==false) assert(t_old!=this->T()); #endif } }; //@} }//end namespace tetra }//end namespace vcg #endif