#ifndef __VCG_MESH_RESAMPLER #define __VCG_MESH_RESAMPLER #include #include #include #include #include #include #include #include //#include //debugghe namespace vcg { namespace trimesh { class RES { public: enum MarchMode {MMarchingCubes,MExtendedMarchingCubes} ; }; /** \addtogroup trimesh */ /*@{*/ /*@{*/ /** Class Resampler. This is class reasmpling a mesh using marching cubes methods @param OLD_MESH_TYPE (Template Parameter) Specifies the type of mesh to be resampled @param NEW_MESH_TYPE (Template Parameter) Specifies the type of output mesh. @param MARCHING_ALGORITHM (Template Parameter) Specifies the type of marching cube algorithm (extended or not). */ template class Resampler:RES { typedef typename OLD_MESH_TYPE Old_Mesh; typedef typename NEW_MESH_TYPE New_Mesh; template class Walker { private: typedef int VertexIndex; typedef typename OLD_MESH_TYPE Old_Mesh; typedef typename NEW_MESH_TYPE New_Mesh; typedef typename New_Mesh::CoordType NewCoordType; typedef typename New_Mesh::VertexType* VertexPointer; typedef typename Old_Mesh::FaceContainer FaceCont; typedef typename vcg::GridStaticPtr GridType; typedef typename vcg::Box3 BoundingBox; //typedef typename std::pair PointPair; typedef vcg::tri::Allocator< New_Mesh > Allocator; protected: BoundingBox _bbox; vcg::Point3i _resolution; vcg::Point3i _cell_size; float dim_diag; int _slice_dimension; int _current_slice; VertexIndex *_x_cs; // indici dell'intersezioni della superficie lungo gli Xedge della fetta corrente VertexIndex *_y_cs; // indici dell'intersezioni della superficie lungo gli Yedge della fetta corrente VertexIndex *_z_cs; // indici dell'intersezioni della superficie lungo gli Zedge della fetta corrente VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta //float *_v_cs;///values of distance fields for each direction in current slice //float *_v_ns;///values of distance fields for each direction in next slice typedef typename std::pair field_value; field_value* _v_cs; field_value* _v_ns; New_Mesh *_newM; Old_Mesh *_oldM; GridType _g; public: float max_dim; /*Walker(Volume_Dataset *Vo,float in,const BoundingBox &bbox,vcg::Point3i &resolution) {*/ /* init=in; Vol=Vo;*/ void SetBBParameters() { _cell_size.X() =_bbox.DimX()/_resolution.X(); _cell_size.Y() =_bbox.DimY()/_resolution.Y(); _cell_size.Z() =_bbox.DimZ()/_resolution.Z(); ///extend bb until the box - resolution and cell matches while ((_bbox.DimX()%_cell_size.X())!=0) _bbox.max.X()++; while ((_bbox.DimY()%_cell_size.Y())!=0) _bbox.max.Y()++; while ((_bbox.DimZ()%_cell_size.Z())!=0) _bbox.max.Z()++; //exetend bb to 1 cell for each side _bbox.max+=_cell_size; _bbox.min-=_cell_size; ///resetting resolution values _resolution.X()=_bbox.DimX()/_cell_size.X(); _resolution.Y()=_bbox.DimY()/_cell_size.Y(); _resolution.Z()=_bbox.DimZ()/_cell_size.Z(); ///asserting values assert(_bbox.DimX()%_cell_size.X()==0); assert(_bbox.DimY()%_cell_size.Y()==0); assert(_bbox.DimZ()%_cell_size.Z()==0); assert(_cell_size.X()*_resolution.X()==_bbox.DimX()); assert(_cell_size.Y()*_resolution.Y()==_bbox.DimY()); assert(_cell_size.Z()*_resolution.Z()==_bbox.DimZ()); _slice_dimension = _resolution.X()*_resolution.Z(); //Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2)); //max_dim=diag.Norm();///diagonal of a cell // _current_slice = _bbox.min.Y(); Point3f minD=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2)); Point3f maxD=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2)); /*Point3f d=(maxD-minD); dim_diag=d.Norm();*/ } Walker(const BoundingBox &bbox,vcg::Point3i &resolution) { assert (resolution.V(0)<=bbox.DimX()); assert (resolution.V(1)<=bbox.DimY()); assert (resolution.V(2)<=bbox.DimZ()); _bbox= bbox; _resolution = resolution; SetBBParameters(); _x_cs = new VertexIndex[ _slice_dimension ]; _y_cs = new VertexIndex[ _slice_dimension ]; _z_cs = new VertexIndex[ _slice_dimension ]; _x_ns = new VertexIndex[ _slice_dimension ]; _z_ns = new VertexIndex[ _slice_dimension ]; _v_cs= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)]; _v_ns= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)]; }; ~Walker() {} float V(Point3i p) { return (V(p.V(0),p.V(1),p.V(2))); } float V(int x,int y,int z) { assert ((y==_current_slice)||(y==(_current_slice+_cell_size.Y()))); //test if it is outside the bb of the mesh //vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z); /*if (!_oldM->bbox.IsIn(test)) return (1.f);*/ int index=GetSliceIndex(x,z); if (y==_current_slice) { //assert(_v_cs[index]bbox.IsIn(test)) { dist=1.f; return true; }*/ vcg::Point3f Norm; vcg::Point3f Target; vcg::Point3f pip; //vcg::tri::get((*mesh),test,_g,dist,Norm,Target,f,pip); f= vcg::trimesh::GetClosestFace( *mesh,_g,test,dist,dist,Target,Norm,pip); if (f==NULL) return false; else { Point3f dir=(test-Target); //dist=dir.Norm(); dir.Normalize(); //direction of normal inside the mesh if ((dir*Norm)<0) dist=-dist; //the intersection exist return true; } } ///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of /// the distance of the bb void CumputeSliceValues(int slice,field_value *slice_values) { float dist; /*for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X()) { for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.X(); k+=_cell_size.Z()) { */ for (int i=_bbox.min.X(); i<=_bbox.max.X(); i+=_cell_size.X()) { for (int k=_bbox.min.Z(); k<=_bbox.max.Z(); k+=_cell_size.Z()) { int index=GetSliceIndex(i,k); if (DistanceFromMesh(i,slice,k,_oldM,dist))///compute the distance,inside volume of the mesh is negative { //put computed values in the slice values matrix slice_values[index]=field_value(true,dist); //end putting values } else slice_values[index]=field_value(false,dist); } } } template void ProcessSlice(std::vector cells,EXTRACTOR_TYPE &extractor) { std::vector::iterator it; for (it=cells.begin();itface.begin(),_oldM->face.end()); } template void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor) { _newM=&new_mesh; _oldM=&old_mesh; SetGrid(); _newM->Clear(); vcg::Point3i p1, p2; Begin(); extractor.Initialize(); for (int j=_bbox.min.Y(); j<=_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y()) { ProcessSlice(FindCells(),extractor);//find cells where there is the isosurface and examine it NextSlice(); } extractor.Finalize(); /*_newM= NULL;*/ } //return the index of a vertex in slide as it was stored int GetSliceIndex(int x,int z) { int ii = (x - _bbox.min.X())/_cell_size.X(); int zz = (z - _bbox.min.Z())/_cell_size.Z(); VertexIndex index = ii+zz*(_resolution.X()+1); return (index); } ///return true if exist in the cell one value <0 and another one >0 bool FindMinMax(vcg::Point3i min,vcg::Point3i max) { assert((min.X() that bbox.diag this value is not valid //that is the mark if (_corners[i].Y()==_current_slice) value=_v_cs[GetSliceIndex(_corners[i].X(),_corners[i].Z())]; else value=_v_ns[GetSliceIndex(_corners[i].X(),_corners[i].Z())]; if (value.first==false) return false; //assign new values of min and max if (value.secondmax_value) max_value=value.second; } /////do not test with zero.. if ((min_value<=0.f)&&(max_value>=0.f)) return true; return false; //return true; } ///filter the cells from to_hexamine vector to the ones that /// min and max of the cell are <0 and >0 std::vector FindCells() { std::vector res; for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X()) { for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z()) { int x0=i; int y0=_current_slice; int z0=k; int x1=x0+_cell_size.X(); int y1=y0+_cell_size.Y(); int z1=z0+_cell_size.Z(); if (FindMinMax(Point3i(x0,y0,z0),Point3i(x1,y1,z1))) res.push_back(Point3i(x0,y0,z0)); } } return res; } //swap slices , the initial value of distance fields ids set as double of bbox of space void NextSlice() { memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex)); std::swap(_x_cs, _x_ns); std::swap(_z_cs, _z_ns); std::swap(_v_cs, _v_ns); _current_slice += _cell_size.Y(); //memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float)); //memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value)); CumputeSliceValues(_current_slice+ _cell_size.Y(),_v_ns); } //initialize data strucures , the initial value of distance fields ids set as double of bbox of space void Begin() { _current_slice = _bbox.min.Y(); memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex)); memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex)); memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex)); /*memset(_v_cs, dim_diag*2.f, _slice_dimension*sizeof(float)); memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));*/ /*memset(_v_cs, field_value(false,0.f), _slice_dimension*sizeof(field_value)); memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));*/ CumputeSliceValues(_current_slice,_v_cs); CumputeSliceValues(_current_slice+_cell_size.Y(),_v_ns); } bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); VertexIndex index = i+z*_resolution.X(); //VertexIndex index =GetSliceIndex(// int v_ind = 0; if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge { if (p1.Y()==_current_slice) { if (_x_cs[index]!=-1) { v_ind = _x_cs[index]; v = &_newM->vert[v_ind]; assert(!v->IsD()); return true; } } else { if (_x_ns[index]!=-1) { v_ind = _x_ns[index]; v = &_newM->vert[v_ind]; assert(!v->IsD()); return true; } } v = NULL; return false; } else if (p1.Y()!=p2.Y()) //intersezione della superficie con un Yedge { if (_y_cs[index]!=-1) { v_ind =_y_cs[index]; v = &_newM->vert[v_ind]; assert(!v->IsD()); return true; } else { v = NULL; return false; } } else if (p1.Z()!=p2.Z()) //intersezione della superficie con un Zedge { if (p1.Y()==_current_slice) { if ( _z_cs[index]!=-1) { v_ind = _z_cs[index]; v = &_newM->vert[v_ind]; assert(!v->IsD()); return true; } } else { if (_z_ns[index]!=-1) { v_ind = _z_ns[index]; v = &_newM->vert[v_ind]; assert(!v->IsD()); return true; } } v = NULL; return false; } assert (0); return false; } ///interpolate NewCoordType Interpolate(const vcg::Point3i &p1, const vcg::Point3i &p2,int dir) { float f1 = (float)V(p1); float f2 = (float)V(p2); float u = (float) f1/(f1-f2); NewCoordType ret=vcg::Point3f((float)p1.V(0),(float)p1.V(1),(float)p1.V(2)); ret.V(dir) = (float) p1.V(dir)*(1.f-u) + u*(float)p2.V(dir); return (ret); } ///if there is a vertex in z axis of a cell return the vertex or create it void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y()))); int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); VertexIndex index = i+z*_resolution.X(); VertexIndex pos; if (p1.Y()==_current_slice) { if ((pos=_x_cs[index])==-1) { _x_cs[index] = (VertexIndex) _newM->vert.size(); pos = _x_cs[index]; Allocator::AddVertices( *_newM, 1 ); v = &_newM->vert[pos]; v->P()=Interpolate(p1,p2,0); return; } } if (p1.Y()==_current_slice+_cell_size.Y()) { if ((pos=_x_ns[index])==-1) { _x_ns[index] = (VertexIndex) _newM->vert.size(); pos = _x_ns[index]; Allocator::AddVertices( *_newM, 1 ); v = &_newM->vert[pos]; v->P()=Interpolate(p1,p2,0); return; } } v = &_newM->vert[pos]; } ///if there is a vertex in y axis of a cell return the vertex or create it void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y()))); int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); VertexIndex index = i+z*_resolution.X(); VertexIndex pos; if ((pos=_y_cs[index])==-1) { _y_cs[index] = (VertexIndex) _newM->vert.size(); pos = _y_cs[index]; Allocator::AddVertices( *_newM, 1); v = &_newM->vert[ pos ]; v->P()=Interpolate(p1,p2,1); } v = &_newM->vert[pos]; } ///if there is a vertex in z axis of a cell return the vertex or create it void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) { assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y()))); int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); VertexIndex index = i+z*_resolution.X(); VertexIndex pos; if (p1.Y()==_current_slice) { if ((pos=_z_cs[index])==-1) { _z_cs[index] = (VertexIndex) _newM->vert.size(); pos = _z_cs[index]; Allocator::AddVertices( *_newM, 1 ); v = &_newM->vert[pos]; v->P()=Interpolate(p1,p2,2); return; } } if (p1.Y()==_current_slice+_cell_size.Y()) { if ((pos=_z_ns[index])==-1) { _z_ns[index] = (VertexIndex) _newM->vert.size(); pos = _z_ns[index]; Allocator::AddVertices( *_newM, 1 ); v = &_newM->vert[pos]; v->P()=Interpolate(p1,p2,2); return; } } v = &_newM->vert[pos]; } };//end class walker public: typedef typename Walker< Old_Mesh,New_Mesh> MyWalker; typedef typename vcg::tri::MarchingCubes MarchingCubes; typedef typename vcg::tri::ExtendedMarchingCubes ExtendedMarchingCubes; ///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter template static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3 accuracy,float max_dist) { new_mesh.Clear(); if (Old_Mesh::HasPerFaceNormal()) vcg::tri::UpdateNormals::PerFaceNormalized(old_mesh); if (Old_Mesh::HasPerVertexNormal()) vcg::tri::UpdateNormals::PerVertexNormalized(old_mesh); ///the mesh must have plane for ugrid if (!Old_Mesh::FaceType::HasEdgePlane()) assert(0); else vcg::tri::UpdateEdges::Set(old_mesh); ///be sure that the bounding box is updated vcg::tri::UpdateBounding::Box(old_mesh); // MARCHING CUBES CALLS Point3i min=Point3i((int)(old_mesh.bbox.min.V(0)),(int)(old_mesh.bbox.min.V(1)),(int)(old_mesh.bbox.min.V(2))); Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2))); vcg::Box3 boxInt=Box3(min,max); float rx=((float)boxInt.DimX())/(float)accuracy.X(); float ry=((float)boxInt.DimY())/(float)accuracy.Y(); float rz=((float)boxInt.DimZ())/(float)accuracy.Z(); int rxi=(int)ceil(rx); int ryi=(int)ceil(ry); int rzi=(int)ceil(rz); Point3i res=Point3i(rxi,ryi,rzi); MyWalker walker(boxInt,res); walker.max_dim=max_dist; if (mm==MMarchingCubes) { MarchingCubes mc(new_mesh, walker); walker.BuildMesh(old_mesh,new_mesh,mc); } else if (mm==MExtendedMarchingCubes) { ExtendedMarchingCubes mc(new_mesh, walker,30); walker.BuildMesh(old_mesh,new_mesh,mc); } if (New_Mesh::HasFFTopology()) vcg::tri::UpdateTopology::FaceFace(new_mesh); if (New_Mesh::HasVFTopology()) vcg::tri::UpdateTopology::VertexFace(new_mesh); if (New_Mesh::HasPerFaceNormal()) vcg::tri::UpdateNormals::PerFaceNormalized(new_mesh); if (New_Mesh::HasPerVertexNormal()) vcg::tri::UpdateNormals::PerVertexNormalized(new_mesh); } };//end class resampler };//end namespace trimesh };//end namespace vcg #endif