#include #include #include #include /** BIT-QUAD creation support: a few basic operations to work with bit-quads simplices (quads defined by faux edges over a tri mesh backbone) [ basic operations: ] bool IsDoublet(const FaceType& f, int wedge) void RemoveDoublet(FaceType &f, int wedge, MeshType& m) - identifies and removed "Doublets" (pair of quads sharing two consecutive edges) bool IsSinglet(const FaceType& f, int wedge) void RemoveSinglet(FaceType &f, int wedge, MeshType& m) void FlipDiag(FaceType &f) - rotates the faux edge of a quad (quad only change internally) bool RotateEdge(FaceType& f, int w0a); - rotate a quad edge (clockwise or counterclockwise, specified via template) bool RotateVertex(FaceType &f, int w0) - rotate around a quad vertex ("wind-mill" operation) void CollapseDiag(FaceType &f, ... p , MeshType& m) - collapses a quad on its diagonal. - p identifies the pos of collapsed point (as either the parametric pos on the diagonal, or a fresh coordtype) [ helper functions: ] ScalarType quadQuality( ... ); - returns the quality for a given quad - (should be made into a template parameter for methods using it) - currently measures how squared each angle is int FauxIndex(const FaceType* f); - returns index of the only faux edge of a quad (otherwise, assert) int CountBitPolygonInternalValency(const FaceType& f, int wedge) - returns valency of vertex in terms of polygons (quads, tris...) */ // this must become a parameter in the corresponding class #define DELETE_VERTICES 0 // let's not remove them after all... // since TwoManyfold is weak, the vertex could still be used elsewhere... namespace vcg{namespace tri{ /* simple geometric-interpolation mono-function class used as a default template parameter to BitQuad class */ template class GeometricInterpolator{ public: typedef typename VertexType::ScalarType ScalarType; static void Apply( const VertexType &a, const VertexType &b, ScalarType t, VertexType &res){ assert (&a != &b); res.P() = a.P()*(1-t) + b.P()*(t); } }; template < // first template parameter: the tri mesh (with face-edges flagged) class _MeshType, // second template parameter: used to define interpolations between points class Interpolator = GeometricInterpolator > class BitQuad{ public: typedef _MeshType MeshType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::CoordType CoordType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FaceType* FaceTypeP; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::VertexIterator VertexIterator; static void MarkFaceF(FaceType *f){ f->V(0)->SetS(); f->V(1)->SetS(); f->V(2)->SetS(); int i=FauxIndex(f); f->FFp( i )->V2( f->FFi(i) )->SetS(); } template static bool RotateEdge(FaceType& f, int w0a){ FaceType *fa = &f; assert(! fa->IsF(w0a) ); VertexType *v0, *v1; v0= fa->V0(w0a); v1= fa->V1(w0a); int w1a = (w0a+1)%3; int w2a = (w0a+2)%3; FaceType *fb = fa->FFp(w0a); MarkFaceF(fa); MarkFaceF(fb); int w0b = fa->FFi(w0a); int w1b = (w0b+1)%3; int w2b = (w0b+2)%3; if (fa->IsF(w2a) == verse) { if (!CheckFlipDiag(*fa)) return false; FlipDiag(*fa); // recover edge index, so that (f, w0a) identifies the same edge as before FaceType *fc = fa->FFp(FauxIndex(fa)); for (int i=0; i<3; i++){ if ( v0==fa->V0(i) && v1==fa->V1(i) ) w0a = i; if ( v0==fc->V0(i) && v1==fc->V1(i) ) { fa = fc; w0a = i; } } } if (fb->IsF(w2b) == verse) { if (!CheckFlipDiag(*fb)) return false; FlipDiag(*fb); } if (!CheckFlipEdge(*fa,w0a)) return false; FlipEdge(*fa,w0a); return true; } /* small helper function which returns the index of the only faux index, assuming there is exactly one (asserts out otherwise) */ static int FauxIndex(const FaceType* f){ if (f->IsF(0)) return 0; if (f->IsF(1)) return 1; assert(f->IsF(2)); return 2; } // rotates the diagonal of a quad static void FlipDiag(FaceType &f){ int faux = FauxIndex(&f); FaceType* fa = &f; FaceType* fb = f.FFp(faux); vcg::face::FlipEdge(f, faux); // ripristinate faux flags fb->ClearAllF(); fa->ClearAllF(); for (int k=0; k<3; k++) { if (fa->FFp(k) == fb) fa->SetF(k); if (fb->FFp(k) == fa) fb->SetF(k); } } // given a vertex (i.e. a face and a wedge), // this function tells us how the average edge lenght around a vertex would change // if that vertex is rotated static ScalarType AvgEdgeLenghtVariationIfVertexRotated(const FaceType &f, int w0) { assert(!f.IsD()); ScalarType before=0, // sum of quad edges (originating from v) after=0; // sum of quad diag (orginating from v) int guard = 0; // rotate arond vertex const FaceType* pf = &f; int pi = w0; int n = 0; // vertex valency int na = 0; do { ScalarType triEdge = (pf->P0(pi) - pf->P1(pi) ).Norm(); if (pf->IsF(pi)) { after += triEdge; na++;} else { before+= triEdge; n++; } if ( pf->IsF((pi+1)%3)) { after += CounterDiag( pf ).Norm(); na++; } const FaceType *t = pf; t = pf->FFp( pi ); if (pf == t ) return std::numeric_limits::max(); // it's a mesh border! flee! pi = pf->cFFi( pi ); pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) ); pf = t; assert(guard++<100); } while (pf != &f); assert (na == n); return (after-before)/n; } /* const FaceType* pf = &f; int pi = wedge; int res = 0, guard=0; do { if (!pf->IsAnyF()) return false; // there's a triangle! if (!pf->IsF(pi)) res++; const FaceType *t = pf; t = pf->FFp( pi ); if (pf == t ) return false; pi = pf->cFFi( pi ); pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) ); pf = t; assert(guard++<100); } while (pf != &f); */ // given a vertex (i.e. a face and a wedge), // this function tells us if it should be rotated or not // (currently, we should iff it is shortened) static bool TestVertexRotation(const FaceType &f, int w0) { assert(!f.IsD()); // rotate quad IFF this way edges become shorter: return AvgEdgeLenghtVariationIfVertexRotated(f,w0)<0; } static bool RotateVertex(FaceType &f, int w0) { int guard = 0; FaceType* pf = &f; int pi = w0; int n = 0; // vertex valency if (pf->IsF((pi+2) % 3)) { pi = (pi+2)%3; // do one step back int tmp = pf->FFi(pi); pf = pf->FFp(pi); pi = tmp; // flipF } const FaceType* stopA = pf; const FaceType* stopB = pf->FFp(FauxIndex(pf)); // rotate around vertex, flipping diagonals if necessary, do { bool mustFlip; if (pf->IsF(pi)) { // if next edge is faux, move on other side of quad int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF mustFlip = false; } else { mustFlip = true; } FaceType *lastF = pf; int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF if (mustFlip) { if (!CheckFlipDiag(*lastF)) return false; // cannot flip?? FlipDiag(*lastF); } MarkFaceF(pf); } while (pf != stopA && pf!= stopB); // last pass: rotate arund vertex again, changing faux status stopA=pf; do { int j = pi; if (pf->IsF(j)) { pf->ClearF(j); IncreaseValency(pf->V(j)); } else { pf->SetF(j); DecreaseValency(pf->V(j)); } j = (j+2)%3; if (pf->IsF(j)) pf->ClearF(j); else pf->SetF(j); int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF flipV } while (pf != stopA ); return true; } // flips the faux edge of a quad static void FlipEdge(FaceType &f, int k){ assert(!f.IsF(k)); FaceType* fa = &f; FaceType* fb = f.FFp(k); assert(fa!=fb); // else, rotating a border edge // backup prev other-quads-halves FaceType* fa2 = fa->FFp( FauxIndex(fa) ); FaceType* fb2 = fb->FFp( FauxIndex(fb) ); IncreaseValency( fa->V2(k) ); IncreaseValency( fb->V2(f.FFi(k)) ); DecreaseValency( fa->V0(k) ); DecreaseValency( fa->V1(k) ); vcg::face::FlipEdge(*fa, k); // ripristinate faux flags fb->ClearAllF(); fa->ClearAllF(); for (int k=0; k<3; k++) { //if (fa->FFp(k) == fa2) fa->SetF(k); //if (fb->FFp(k) == fb2) fb->SetF(k); if (fa->FFp(k)->IsF( fa->FFi(k) )) fa->SetF(k); if (fb->FFp(k)->IsF( fb->FFi(k) )) fb->SetF(k); } } // check if a quad diagonal can be topologically flipped static bool CheckFlipDiag(FaceType &f){ return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) ); } // given a face (part of a quad), returns its diagonal static CoordType Diag(const FaceType* f){ int i = FauxIndex(f); return f->P1( i ) - f->P0( i ); } // given a face (part of a quad), returns other diagonal static CoordType CounterDiag(const FaceType* f){ int i = FauxIndex(f); return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ; } /* helper function: collapses a single face along its faux edge. Updates FF adj of other edges. */ static void _CollapseDiagHalf(FaceType &f, int faux, MeshType& m) { int faux1 = (faux+1)%3; int faux2 = (faux+2)%3; DecreaseValency(f.V2(faux)); // update valency FaceType* fA = f.FFp( faux1 ); FaceType* fB = f.FFp( faux2 ); MarkFaceF(fA); MarkFaceF(fB); int iA = f.FFi( faux1 ); int iB = f.FFi( faux2 ); if (fA==&f && fB==&f) { // both non-faux edges are borders: tri-face disappears, just remove the vertex if (DELETE_VERTICES) if (GetValency(f.V(faux2))==0) Allocator::DeleteVertex(m,*(f.V(faux2))); } else { if (fA==&f) { fB->FFp(iB) = fB; fB->FFi(iB) = iB; } else { fB->FFp(iB) = fA; fB->FFi(iB) = iA; } if (fB==&f) { fA->FFp(iA) = fA; fA->FFi(iA) = iA; } else { fA->FFp(iA) = fB; fA->FFi(iA) = iB; } } Allocator::DeleteFace(m,f); } static void RemoveDoublet(FaceType &f, int wedge, MeshType& m){ if (f.IsF((wedge+1)%3) ) { VertexType *v = f.V(wedge); FlipDiag(f); // quick hack: recover wedge index after flip if (f.V(0)==v) wedge = 0; else if (f.V(1)==v) wedge = 1; else { assert(f.V(2)==v); wedge = 2; } } ScalarType k=(f.IsF(wedge))?1:0; CollapseDiag(f, k, m); VertexType *v = f.V(wedge); } static void RemoveSinglet(FaceType &f, int wedge, MeshType& m){ FaceType *fa, *fb; // these will die FaceType *fc, *fd; // their former neight fa = & f; fb = fa->FFp(wedge); int wa0 = wedge; int wa1 = (wa0+1)%3 ; int wa2 = (wa0+2)%3 ; int wb0 = (fa->FFi(wa0)+1)%3; int wb1 = (wb0+1)%3 ; int wb2 = (wb0+2)%3 ; assert (fb == fa->FFp( wa2 ) ); // otherwise, not a singlet // valency decrease DecreaseValency(fa->V(wa1)); DecreaseValency(fa->V(wa2)); if (fa->IsF(wa0)) { DecreaseValency(fa->V(wa2)); // double decrease of valency } else { DecreaseValency(fa->V(wa1)); // double decrease of valency } // no need to MarkFaceF ! fc = fa->FFp(wa1); fd = fb->FFp(wb1); int wc = fa->FFi(wa1); int wd = fb->FFi(wb1); fc->FFp(wc) = fd; fc->FFi(wc) = wd; fd->FFp(wd) = fc; fd->FFi(wd) = wc; // faux status of survivors: unchanged assert( ! ( fc->IsF( wc) ) ); assert( ! ( fd->IsF( wd) ) ); Allocator::DeleteFace( m,*fa ); Allocator::DeleteFace( m,*fb ); DecreaseValency(fa->V(wedge) ); if (DELETE_VERTICES) if (GetValency(fa->V(wedge))==0) Allocator::DeleteVertex( m,*fa->V(wedge) ); } static bool TestAndRemoveDoublet(FaceType &f, int wedge, MeshType& m){ if (IsDoublet(f,wedge)) { RemoveDoublet(f,wedge,m); return true; } return false; } static bool TestAndRemoveSinglet(FaceType &f, int wedge, MeshType& m){ if (IsSinglet(f,wedge)) { RemoveSinglet(f,wedge,m); return true; } return false; } // given a face and a wedge, counts its valency in terms of quads (and triangles) // uses only FF, assumes twomanyfold // returns -1 if border static int CountBitPolygonInternalValency(const FaceType& f, int wedge){ const FaceType* pf = &f; int pi = wedge; int res = 0; do { if (!pf->IsF(pi)) res++; const FaceType *t = pf; t = pf->FFp( pi ); if (pf == t ) return -1; pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) ); pf = t; } while (pf != &f); return res; } // given a face and a wedge, returns if it host a doubet // assumes tri and quad only. uses FF topology only. static bool IsDoubletFF(const FaceType& f, int wedge){ const FaceType* pf = &f; int pi = wedge; int res = 0, guard=0; do { if (!pf->IsAnyF()) return false; // there's a triangle! if (!pf->IsF(pi)) res++; const FaceType *t = pf; t = pf->FFp( pi ); if (pf == t ) return false; pi = pf->cFFi( pi ); pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) ); pf = t; assert(guard++<100); } while (pf != &f); return (res == 2); } // version that uses vertex valency static bool IsDoublet(const FaceType& f, int wedge){ return (GetValency( f.V(wedge)) == 2) && (!f.V(wedge)->IsB() ) ; } // given a face and a wedge, returns if it host a singlets // assumes tri and quad only. uses FF topology only. static bool IsSingletFF(const FaceType& f, int wedge){ const FaceType* pf = &f; int pi = wedge; int res = 0, guard=0; do { if (!pf->IsAnyF()) return false; // there's a triangle! if (!pf->IsF(pi)) res++; const FaceType *t = pf; t = pf->FFp( pi ); if (pf == t ) return false; pi = pf->cFFi( pi ); pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) ); pf = t; assert(guard++<100); } while (pf != &f); return (res == 1); } // version that uses vertex valency static bool IsSinglet(const FaceType& f, int wedge){ return (GetValency( f.V(wedge) ) == 1) && (!f.V(wedge)->IsB() ) ; } static bool CollapseEdgeDirect(FaceType &f, int w0, MeshType& m){ FaceType * f0 = &f; assert( !f0->IsF(w0) ); VertexType *v0, *v1; v0 = f0->V0(w0); v1 = f0->V1(w0); if (!RotateVertex(*f0,w0)) return false; // quick hack: recover original wedge if (f0->V(0) == v0) w0 = 0; else if (f0->V(1) == v0) w0 = 1; else if (f0->V(2) == v0) w0 = 2; else assert(0); assert( f0->V1(w0) == v1 ); assert( f0->IsF(w0) ); CollapseDiag(*f0,PosOnDiag(*f0,false), m); return true; } static bool CollapseEdge(FaceType &f, int w0, MeshType& m){ FaceTypeP f0 = &f; assert(!f0->IsF(w0)); // don't use this method to collapse diag. FaceTypeP f1 = f0->FFp(w0); int w1 = f0->FFi(w0); assert(f0!=f1); // can't collapse border edges! // choose: rotate around V0 or around V1? if ( AvgEdgeLenghtVariationIfVertexRotated(*f0,w0) < AvgEdgeLenghtVariationIfVertexRotated(*f1,w1) ) return CollapseEdgeDirect(*f0,w0,m); else return CollapseEdgeDirect(*f1,w1,m); } /** collapses a quad diagonal a-b forming the new vertex in between the two old vertices. if k == 0, new vertex is in a if k == 1, new vertex is in b if k == 0.5, new vertex in the middle, etc */ static void CollapseCounterDiag(FaceType &f, ScalarType interpol, MeshType& m){ //CoordType p; //int fauxa = FauxIndex(&f); //p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k); FlipDiag(f); CollapseDiag(f,interpol,m); } /* static void CollapseCounterDiag(FaceType &f, ScalarType k, MeshType& m){ CoordType p; int fauxa = FauxIndex(&f); p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k); CollapseCounterDiag(f,p,m); } */ //static void CollapseCounterDiag(FaceType &f, const CoordType &p, MeshType& m){ // FlipDiag(f); // CollapseDiag(f,p,m); //} static void CollapseDiag(FaceType &f, ScalarType interpol, MeshType& m){ FaceType* fa = &f; int fauxa = FauxIndex(fa); FaceType* fb = fa->FFp(fauxa); assert (fb!=fa); int fauxb = FauxIndex(fb); VertexType* va = fa->V(fauxa); // va lives VertexType* vb = fb->V(fauxb); // vb dies Interpolator::Apply( *(f.V0(fauxa)), *(f.V1(fauxa)), interpol, *va); // update FV... bool border = false; int pi = fauxb; FaceType* pf = fb; /* pf, pi could be a Pos p(pf, pi) */ // rotate around vb, (same-sense-as-face)-wise do { pf->V(pi) = va; pi=(pi+2)%3; FaceType *t = pf->FFp(pi); if (t==pf) { border= true; break; } pi = pf->FFi(pi); pf = t; } while (pf!=fb); // rotate around va, (counter-sense-as-face)-wise if (border) { int pi = fauxa; FaceType* pf = fa; /* pf, pi could be a Pos p(pf, pi) */ do { pi=(pi+1)%3; pf->V(pi) = va; FaceType *t = pf->FFp(pi); if (t==pf) break; pi = pf->FFi(pi); pf = t; } while (pf!=fb); } // update FF, delete faces _CollapseDiagHalf(*fb, fauxb, m); _CollapseDiagHalf(*fa, fauxa, m); SetValency(va, GetValency(vb)+GetValency(va)-2); SetValency(vb, GetValency(vb)+GetValency(va)-2); if (DELETE_VERTICES) Allocator::DeleteVertex(m,*vb); } // helper function: find a good position on a diag to collapse a point // currently, it is point in the middle, // unless a mixed border-non border edge is collapsed, then it is an exreme static ScalarType PosOnDiag(const FaceType& f, bool counterDiag){ bool b0, b1, b2, b3; // which side of the quads are border const FaceType* fa=&f; int ia = FauxIndex(fa); const FaceType* fb=fa->cFFp(ia); int ib = fa->cFFi(ia); b0 = fa->FFp((ia+1)%3) == fa; b1 = fa->FFp((ia+2)%3) == fa; b2 = fb->FFp((ib+1)%3) == fb; b3 = fb->FFp((ib+2)%3) == fb; if (counterDiag) { if ( (b0||b1) && !(b2||b3) ) return 1; if ( !(b0||b1) && (b2||b3) ) return 0; } else { if ( (b1||b2) && !(b3||b0) ) return 0; if ( !(b1||b2) && (b3||b0) ) return 1; } //if (f->FF( FauxIndex(f) )->IsB( return 0.5f; } // trick! hide valency in flags typedef enum { VALENCY_FLAGS = 24 } ___; // this bit and the 4 successive one are devoted to store valency static void SetValency(VertexType *v, int n){ //v->Q() = n; assert(n>=0 && n<=31); v->Flags()&= ~(31<Flags()|= n<cQ()); return ( v->Flags() >> (VALENCY_FLAGS) ) & 31; } static void IncreaseValency(VertexType *v, int dv=1){ #ifdef NDEBUG v->Flags() += dv<Flags() -= dv<IsD()) { SetValency(&*vi,0); } for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { for (int w=0; w<3; w++) if (!fi->IsF(w)) IncreaseValency( fi->V(w)); } } static void UpdateValencyInQuality(MeshType& m){ for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) { vi->Q() = 0; } for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { for (int w=0; w<3; w++) fi->V(w)->Q() += (fi->IsF(w)||fi->IsF((w+2)%3) )? 0.5f:1; } } static bool HasConsistentValencyFlag(MeshType &m) { UpdateValencyInFlags(m); UpdateValencyInQuality(m); for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) { if (GetValency(&*vi)!=vi->Q()) return false; } return true; } private: // helper function: // returns quality of a quad formed by points a,b,c,d // quality is computed as "how squared angles are" static ScalarType quadQuality(const CoordType &a, const CoordType &b, const CoordType &c, const CoordType &d){ ScalarType score = 0; score += 1 - math::Abs( Cos( a,b,c) ); score += 1 - math::Abs( Cos( b,c,d) ); score += 1 - math::Abs( Cos( c,d,a) ); score += 1 - math::Abs( Cos( d,a,b) ); return score / 4; } // helper function: // returns quality of a given (potential) quad static ScalarType quadQuality(FaceType *f, int edge){ CoordType a = f->V0(edge)->P(), b = f->FFp(edge)->V2( f->FFi(edge) )->P(), c = f->V1(edge)->P(), d = f->V2(edge)->P(); return quadQuality(a,b,c,d); } /** helper function: given a quad edge, retruns: 0 if that edge should not be rotated +1 if it should be rotated clockwise (+1) -1 if it should be rotated counterclockwise (-1) Currently an edge is rotated iff it is shortened by that rotations (shortcut criterion) */ static int TestEdgeRotation(const FaceType &f, int w0) { const FaceType *fa = &f; assert(! fa->IsF(w0) ); ScalarType q0,q1,q2; CoordType v0,v1,v2,v3,v4,v5; int w1 = (w0+1)%3; int w2 = (w0+2)%3; v0 = fa->P(w0); v3 = fa->P(w1); if (fa->IsF(w2) ) { v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P(); v2 = fa->P(w2); } else { v1 = fa->P(w2); v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P(); } const FaceType *fb = fa->cFFp(w0); w0 = fa->cFFi(w0); w1 = (w0+1)%3; w2 = (w0+2)%3; if (fb->IsF(w2) ) { v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P(); v5 = fb->P(w2); } else { v4 = fb->P(w2); v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P(); } /* // max overall quality criterion: q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is? q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW? q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW? if (q0>=q1 && q0>=q2) return 0; if (q1>=q2) return 1;*/ // min distance (shortcut criterion) q0 = (v0 - v3).SquaredNorm(); q1 = (v1 - v4).SquaredNorm(); q2 = (v5 - v2).SquaredNorm(); if (q0<=q1 && q0<=q2) return 0; if (q1<=q2) return 1; return -1; } private: // helper function: // cos of angle abc. This should probably go elsewhere static ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c ) { CoordType e0 = b - a, e1 = b - c; ScalarType d = (e0.Norm()*e1.Norm()); if (d==0) return 0.0; return (e0*e1)/d; } }; }} // end namespace vcg::tri