/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef VCGLIB_SPATIAL_HASHING #define VCGLIB_SPATIAL_HASHING #include #include //#include #include #include #ifdef _WIN32 #ifndef __MINGW32__ #include #define STDEXT stdext #else #include #define STDEXT __gnu_cxx #endif #else #include #define STDEXT __gnu_cxx #endif namespace vcg{ // hashing function struct HashFunctor : public std::unary_function { enum { // parameters for hash table bucket_size = 4, // 0 < bucket_size min_buckets = 8 }; size_t operator()(const Point3i &p) const { const size_t _HASH_P0 = 73856093u; const size_t _HASH_P1 = 19349663u; const size_t _HASH_P2 = 83492791u; return size_t(p.V(0))*_HASH_P0 ^ size_t(p.V(1))*_HASH_P1 ^ size_t(p.V(2))*_HASH_P2; } bool operator()(const Point3i &s1, const Point3i &s2) const { // test if s1 ordered before s2 return (s1 < s2); } }; /** Spatial Hash Table Spatial Hashing as described in "Optimized Spatial Hashing for Coll ision Detection of Deformable Objects", Matthias Teschner and Bruno Heidelberger and Matthias Muller and Danat Pomeranets and Markus Gross */ template < typename ObjType,class FLT=double> class SpatialHashTable:public BasicGrid, public SpatialIndex { public: typedef SpatialHashTable SpatialHashType; typedef ObjType* ObjPtr; typedef typename ObjType::ScalarType ScalarType; typedef Point3 CoordType; typedef typename BasicGrid::Box3x Box3x; // Hash table definition // the hash index directly the grid structure. // We use a MultiMap because we need to store many object (faces) inside each cell of the grid. typedef typename STDEXT::hash_multimap HashType; typedef typename HashType::iterator HashIterator; HashType hash_table; // The real HASH TABLE ************************************** // This vector is just a handy reference to all the allocated cells, // becouse hashed multimaps does not expose a direct list of all the different keys. std::vector AllocatedCells; // Class to abstract a HashIterator (that stores also the key, // while the interface of the generic spatial indexing need only simple object (face) pointers. struct CellIterator { CellIterator(){} HashIterator t; ObjPtr &operator *(){return (t->second); } ObjPtr operator *() const {return (t->second); } bool operator != (const CellIterator & p) const {return t!=p.t;} void operator ++() {t++;} }; size_t CellSize(const Point3i &cell) { return hash_table.count(cell); } inline bool EmptyCell(const Point3i &cell) const { return hash_table.find(cell) == hash_table.end(); } void UpdateAllocatedCells() { AllocatedCells.clear(); if(hash_table.empty()) return; AllocatedCells.push_back(hash_table.begin()->first); for(HashIterator fi=hash_table.begin();fi!=hash_table.end();++fi) { if(AllocatedCells.back()!=fi->first) AllocatedCells.push_back(fi->first); } } protected: ///insert a new cell void InsertObject(ObjType* s, const Point3i &cell) { //if(hash_table.count(cell)==0) AllocatedCells.push_back(cell); hash_table.insert(typename HashType::value_type(cell, s)); } ///remove all the objects in a cell void RemoveCell(const Point3i &cell) { } ///insert a new cell bool RemoveObject(ObjType* s, const Point3i &cell) { std::pair CellRange = hash_table.equal_range(cell); CellIterator first; first.t=CellRange.first; CellIterator end; end.t=CellRange.second; for(CellIterator ci = first; ci!=end;++ci) { if (*ci == s) { hash_table.erase(ci.t); return true; } } return false; } public: vcg::Box3i Add( ObjType* s) { Box3 b; s->GetBBox(b); vcg::Box3i bb; BoxToIBox(b,bb); //then insert all the cell of bb for (int i=bb.min.X();i<=bb.max.X();i++) for (int j=bb.min.Y();j<=bb.max.Y();j++) for (int k=bb.min.Z();k<=bb.max.Z();k++) InsertObject(s,vcg::Point3i(i,j,k)); return bb; } int RemoveInSphere(const Point3 &p, const ScalarType radius) { Box3x b(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius)); vcg::Box3i bb; BoxToIBox(b,bb); ScalarType r2=radius*radius; int cnt=0; for (int i=bb.min.X();i<=bb.max.X();i++) for (int j=bb.min.Y();j<=bb.max.Y();j++) for (int k=bb.min.Z();k<=bb.max.Z();k++) { std::pair CellRange = hash_table.equal_range(Point3i(i,j,k)); for(HashIterator hi = CellRange.first; hi!=CellRange.second;++hi) { if(SquaredDistance(p,hi->second->cP()) <= r2) { cnt++; hash_table.erase(hi); } } } return cnt; } // Thsi version of the removal is specialized for the case where // an object has a pointshaped box and using the generic bbox interface is just a waste of time. void RemovePunctual( ObjType *s) { Point3i pi; PToIP(s->cP(),pi); std::pair CellRange = hash_table.equal_range(pi); for(HashIterator hi = CellRange.first; hi!=CellRange.second;++hi) { if (hi->second == s) { hash_table.erase(hi); return; } } } void Remove( ObjType* s) { Box3 b; s->GetBBox(b); vcg::Box3i bb; BoxToIBox(b,bb); //then remove the obj from all the cell of bb for (int i=bb.min.X();i<=bb.max.X();i++) for (int j=bb.min.Y();j<=bb.max.Y();j++) for (int k=bb.min.Z();k<=bb.max.Z();k++) RemoveObject(s,vcg::Point3i(i,j,k)); } /// set an empty spatial hash table void InitEmpty(const Box3x &_bbox, vcg::Point3i grid_size) { Box3x b; Box3x &bbox = this->bbox; CoordType &dim = this->dim; Point3i &siz = this->siz; CoordType &voxel = this->voxel; assert(!_bbox.IsNull()); bbox=_bbox; dim = bbox.max - bbox.min; assert((grid_size.V(0)>0)&&(grid_size.V(1)>0)&&(grid_size.V(2)>0)); siz=grid_size; voxel[0] = dim[0]/siz[0]; voxel[1] = dim[1]/siz[1]; voxel[2] = dim[2]/siz[2]; } /// Insert a mesh in the grid. template void Set(const OBJITER & _oBegin, const OBJITER & _oEnd, const Box3x &_bbox=Box3x() ) { OBJITER i; Box3x b; Box3x &bbox = this->bbox; CoordType &dim = this->dim; Point3i &siz = this->siz; CoordType &voxel = this->voxel; int _size=(int)std::distance(_oBegin,_oEnd); if(!_bbox.IsNull()) this->bbox=_bbox; else { for(i = _oBegin; i!= _oEnd; ++i) { (*i).GetBBox(b); this->bbox.Add(b); } ///inflate the bb calculated bbox.Offset(bbox.Diag()/100.0) ; } dim = bbox.max - bbox.min; BestDim( _size, dim, siz ); // find voxel size voxel[0] = dim[0]/siz[0]; voxel[1] = dim[1]/siz[1]; voxel[2] = dim[2]/siz[2]; for(i = _oBegin; i!= _oEnd; ++i) Add(&(*i)); } ///return the simplexes of the cell that contain p void GridReal( const Point3 & p, CellIterator & first, CellIterator & last ) { vcg::Point3i _c; this->PToIP(p,_c); Grid(_c,first,last); } ///return the simplexes on a specified cell void Grid( int x,int y,int z, CellIterator & first, CellIterator & last ) { this->Grid(vcg::Point3i(x,y,z),first,last); } ///return the simplexes on a specified cell void Grid( const Point3i & _c, CellIterator & first, CellIterator & end ) { std::pair CellRange = hash_table.equal_range(_c); first.t=CellRange.first; end.t=CellRange.second; } void Clear() { hash_table.clear(); AllocatedCells.clear(); } template ObjPtr GetClosest(OBJPOINTDISTFUNCTOR & _getPointDistance, OBJMARKER & _marker, const CoordType & _p, const ScalarType & _maxDist,ScalarType & _minDist, CoordType & _closestPt) { return (vcg::GridClosest(*this,_getPointDistance,_marker, _p,_maxDist,_minDist,_closestPt)); } template unsigned int GetKClosest(OBJPOINTDISTFUNCTOR & _getPointDistance,OBJMARKER & _marker, const unsigned int _k, const CoordType & _p, const ScalarType & _maxDist,OBJPTRCONTAINER & _objectPtrs, DISTCONTAINER & _distances, POINTCONTAINER & _points) { return (vcg::GridGetKClosest (*this,_getPointDistance,_marker,_k,_p,_maxDist,_objectPtrs,_distances,_points)); } template unsigned int GetInSphere(OBJPOINTDISTFUNCTOR & _getPointDistance, OBJMARKER & _marker, const CoordType & _p, const ScalarType & _r, OBJPTRCONTAINER & _objectPtrs, DISTCONTAINER & _distances, POINTCONTAINER & _points) { return(vcg::GridGetInSphere (*this,_getPointDistance,_marker,_p,_r,_objectPtrs,_distances,_points)); } template unsigned int GetInBox(OBJMARKER & _marker, const Box3x _bbox, OBJPTRCONTAINER & _objectPtrs) { return(vcg::GridGetInBox (*this,_marker,_bbox,_objectPtrs)); } template ObjPtr DoRay(OBJRAYISECTFUNCTOR & _rayIntersector, OBJMARKER & _marker, const Ray3 & _ray, const ScalarType & _maxDist, ScalarType & _t) { return(vcg::GridDoRay (*this,_rayIntersector,_marker,_ray,_maxDist,_t)); } }; // end class /** Spatial Hash Table Dynamic Update the Hmark value on the simplex for dynamic updating of contents of the cell. The simplex must have the HMark() function. */ template < typename ContainerType,class FLT=double> class DynamicSpatialHashTable: public SpatialHashTable { public: typedef typename SpatialHashTable::CoordType CoordType; typedef typename SpatialHashTable::ObjType ObjType; typedef typename SpatialHashTable::ObjPtr ObjPtr; typedef typename SpatialHashTable::Box3x Box3x; typedef typename SpatialHashTable::CellIterator CellIterator; void _UpdateHMark(ObjType* s){ s->HMark() = this->tempMark;} void getInCellUpdated(vcg::Point3i cell,std::vector &elems) { CellIterator first,last,l; Grid(cell,first,last); for (l=first;l!=last;l++) { if ((l->second)>=(**l).HMark()) elems.push_back(&(**l)); } } }; }// end namespace #endif