/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_FACE_PLUS_COMPONENT #define __VCG_FACE_PLUS_COMPONENT #include #include #include #include namespace vcg { namespace face { /* Some naming Rules All the Components that can be added to a vertex should be defined in the namespace vert: */ /*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/ template class EmptyCore: public T { public: inline typename T::VertexType * & V( const int ) { assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::VertexType * cV( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::VertexType * & FVp( const int i ) { return this->V(i); } inline typename T::VertexType * cFVp( const int i ) const { return this->cV(i); } inline typename T::CoordType & P( const int ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } inline const typename T::CoordType &cP( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } static bool HasVertexRef() { return false; } static bool HasFVAdjacency() { return false; } typedef typename T::VertexType::NormalType NormalType; NormalType &N() { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; } const NormalType &cN() const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; } NormalType &WN(int) { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; } const NormalType cWN(int) const { static NormalType dummy_normal(0, 0, 0); return dummy_normal; } static bool HasWedgeNormal() { return false; } static bool HasFaceNormal() { return false; } static bool HasWedgeNormalOcf() { return false; } static bool HasFaceNormalOcf() { return false; } typedef int WedgeTexCoordType; typedef vcg::TexCoord2 TexCoordType; TexCoordType &WT(const int) { static TexCoordType dummy_texture; assert(0); return dummy_texture;} TexCoordType const &cWT(const int) const { static TexCoordType dummy_texture; return dummy_texture;} static bool HasWedgeTexCoord() { return false; } static bool HasWedgeTexCoordOcf() { return false; } int &Flags() { static int dummyflags(0); assert(0); return dummyflags; } int Flags() const { return 0; } static bool HasFlags() { return false; } static bool HasFlagsOcf() { return false; } inline void InitIMark() { } inline int & IMark() { assert(0); static int tmp=-1; return tmp;} inline int IMark() const {return 0;} typedef int MarkType; typedef float QualityType; typedef Point3f Quality3Type; typedef vcg::Color4b ColorType; ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } const ColorType &cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } ColorType &WC(const int) { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } const ColorType &cWC(const int) const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; } QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; } const QualityType &cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; } Quality3Type &Q3() { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } const Quality3Type &cQ3() const { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } static bool HasFaceColor() { return false; } static bool HasFaceColorOcf() { return false;} static bool HasWedgeColor() { return false; } static bool HasWedgeColorOcf() { return false; } static bool HasFaceQuality() { return false; } static bool HasFaceQualityOcf() { return false;} static bool HasFaceQuality3() { return false; } static bool HasFaceQuality3Ocf() { return false;} static bool HasMark() { return false; } static bool HasMarkOcf() { return false; } typedef int VFAdjType; typename T::FacePointer &VFp(const int) { static typename T::FacePointer fp=0; assert(0); return fp; } typename T::FacePointer const cVFp(const int) const { static typename T::FacePointer const fp=0; return fp; } typename T::FacePointer &FFp(const int) { static typename T::FacePointer fp=0; assert(0); return fp; } typename T::FacePointer const cFFp(const int) const { static typename T::FacePointer const fp=0; return fp; } typename T::EdgePointer &FEp(const int) { static typename T::EdgePointer fp=0; assert(0); return fp; } typename T::EdgePointer const cFEp(const int) const { static typename T::EdgePointer const fp=0; return fp; } typename T::HEdgePointer &FHp() { static typename T::HEdgePointer fp=0; assert(0); return fp; } typename T::HEdgePointer const cFHp() const { static typename T::HEdgePointer const fp=0; assert(0);return fp; } char &VFi(const int j){(void)j; static char z=0; assert(0); return z;} char &FFi(const int j){(void)j; static char z=0; assert(0); return z;} const char &cVFi(const int j){(void)j; static char z=0; return z;} const char &cFFi(const int j) const {(void)j; static char z=0; return z;} static bool HasVFAdjacency() { return false; } static bool HasFFAdjacency() { return false; } static bool HasFEAdjacency() { return false; } static bool HasFHAdjacency() { return false; } static bool HasFFAdjacencyOcf() { return false; } static bool HasVFAdjacencyOcf() { return false; } static bool HasFEAdjacencyOcf() { return false; } static bool HasFHAdjacencyOcf() { return false; } typedef int CurvatureDirType; Point3f &PD1(){static Point3f dummy(0,0,0); return dummy;} Point3f &PD2(){static Point3f dummy(0,0,0); return dummy;} const Point3f &cPD1() const {static Point3f dummy(0,0,0); return dummy;} const Point3f &cPD2()const {static Point3f dummy(0,0,0); return dummy;} float &K1(){ static float dummy(0);assert(0);return dummy;} float &K2(){ static float dummy(0);assert(0);return dummy;} const float &cK1()const { static float dummy(0);assert(0);return dummy;} const float &cK2()const { static float dummy(0);assert(0);return dummy;} static bool HasCurvatureDir() { return false; } static bool HasCurvatureDirOcf() { return false; } inline void SetVN(const int & /*n*/) {assert(0);} static bool HasPolyInfo() { return false; } template void ImportData(const RightF & rightF) {T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static void Name(std::vector & name){T::Name(name);} }; /*-------------------------- VertexRef ----------------------------------------*/ template class VertexRef: public T { public: VertexRef(){ v[0]=0; v[1]=0; v[2]=0; } typedef typename T::VertexType::CoordType CoordType; typedef typename T::VertexType::ScalarType ScalarType; inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<3); return v[j]; } inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<3); return v[j]; } inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<3); return v[j]; } // Shortcut per accedere ai punti delle facce inline CoordType & P( const int j ) { assert(j>=0 && j<3); return v[j]->P(); } inline const CoordType & P( const int j ) const { assert(j>=0 && j<3); return v[j]->cP(); } inline const CoordType &cP( const int j ) const { assert(j>=0 && j<3); return v[j]->cP(); } /** Return the pointer to the ((j+1)%3)-th vertex of the face. @param j Index of the face vertex. */ inline typename T::VertexType * & V0( const int j ) { return V(j);} inline typename T::VertexType * & V1( const int j ) { return V((j+1)%3);} inline typename T::VertexType * & V2( const int j ) { return V((j+2)%3);} inline typename T::VertexType * V0( const int j ) const { return V(j);} inline typename T::VertexType * V1( const int j ) const { return V((j+1)%3);} inline typename T::VertexType * V2( const int j ) const { return V((j+2)%3);} inline typename T::VertexType * cV0( const int j ) const { return cV(j);} inline typename T::VertexType * cV1( const int j ) const { return cV((j+1)%3);} inline typename T::VertexType * cV2( const int j ) const { return cV((j+2)%3);} /// Shortcut per accedere ai punti delle facce inline CoordType & P0( const int j ) { return V(j)->P();} inline CoordType & P1( const int j ) { return V((j+1)%3)->P();} inline CoordType & P2( const int j ) { return V((j+2)%3)->P();} inline const CoordType & P0( const int j ) const { return V(j)->P();} inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();} inline const CoordType & P2( const int j ) const { return V((j+2)%3)->P();} inline const CoordType & cP0( const int j ) const { return cV(j)->P();} inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();} inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();} inline typename T::VertexType * & UberV( const int j ) { assert(j>=0 && j<3); return v[j]; } inline const typename T::VertexType * const & UberV( const int j ) const { assert(j>=0 && j<3); return v[j]; } // Small comment about the fact that the pointers are zero filled. // The importLocal is meant for copyng stuff between very different meshes, so copying the pointers would be meaningless. // if you are using ImportData for copying internally simplex you have to set up all the pointers by hand. template void ImportData(const RightF & rightF){ T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasVertexRef() { return true; } static bool HasFVAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("VertexRef"));T::Name(name);} private: typename T::VertexType *v[3]; }; template void ComputeNormal(T &f) { f.N().Import(vcg::Normal(f)); } template void ComputeNormalizedNormal(T &f) { f.N().Import(vcg::NormalizedNormal(f)); } template class NormalAbs: public T { public: typedef A NormalType; NormalType &N() { return _norm; } NormalType cN() const { return _norm; } template void ImportData(const RightF & rightF) { N().Import(rightF.cN()); T::ImportData( rightF); } inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFaceNormal() { return true; } static void Name(std::vector & name){name.push_back(std::string("NormalAbs"));T::Name(name);} private: NormalType _norm; }; template class WedgeNormal: public T { public: typedef typename T::VertexType::NormalType NormalType; NormalType &WN(const int j) { return _wnorm[j]; } const NormalType cWN(const int j) const { return _wnorm[j]; } template void ImportData(const RightF & rightF){ for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasWedgeNormal() { return true; } static void Name(std::vector & name){name.push_back(std::string("WedgeNormal"));T::Name(name);} private: NormalType _wnorm[3]; }; template class WedgeRealNormal: public T { public: typedef A NormalType; NormalType &WN(const int i) { return _wn[i]; } NormalType const &cWN(const int i) const { return _wn[i]; } template void ImportData(const RightF & rightF){ for (int i=0; i<3; ++i) { WN(i) = rightF.cWN(i); } T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasWedgeNormal() { return true; } static void Name(std::vector & name){name.push_back(std::string("WedgeRealNormal"));T::Name(name);} private: NormalType _wn[3]; }; template class WedgeRealNormal3s: public WedgeRealNormal { public: static void Name(std::vector & name){name.push_back(std::string("WedgeRealNormal2s"));TT::Name(name);}}; template class WedgeRealNormal3f: public WedgeRealNormal { public: static void Name(std::vector & name){name.push_back(std::string("WedgeRealNormal2f"));TT::Name(name);}}; template class WedgeRealNormal3d: public WedgeRealNormal { public: static void Name(std::vector & name){name.push_back(std::string("WedgeRealNormal2d"));TT::Name(name);}}; template class Normal3s: public NormalAbs { public:static void Name(std::vector & name){name.push_back(std::string("Normal3s"));T::Name(name);} }; template class Normal3f: public NormalAbs { public: static void Name(std::vector & name){name.push_back(std::string("Normal3f"));T::Name(name);} }; template class Normal3d: public NormalAbs { public: static void Name(std::vector & name){name.push_back(std::string("Normal3d"));T::Name(name);} }; /*-------------------------- TexCoord ----------------------------------------*/ template class WedgeTexCoord: public T { public: typedef int WedgeTexCoordType; typedef A TexCoordType; TexCoordType &WT(const int i) { return _wt[i]; } TexCoordType const &cWT(const int i) const { return _wt[i]; } template void ImportData(const RightF & rightF){ for (int i=0; i<3; ++i) { WT(i) = rightF.cWT(i); } T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasWedgeTexCoord() { return true; } static void Name(std::vector & name){name.push_back(std::string("WedgeTexCoord"));T::Name(name);} private: TexCoordType _wt[3]; }; template class WedgeTexCoord2s: public WedgeTexCoord, TT> { public: static void Name(std::vector & name){name.push_back(std::string("WedgeTexCoord2s"));TT::Name(name);} }; template class WedgeTexCoord2f: public WedgeTexCoord, TT> { public: static void Name(std::vector & name){name.push_back(std::string("WedgeTexCoord2f"));TT::Name(name);} }; template class WedgeTexCoord2d: public WedgeTexCoord, TT> { public: static void Name(std::vector & name){name.push_back(std::string("WedgeTexCoord2d"));TT::Name(name);} }; /*------------------------- BitFlags -----------------------------------------*/ template class BitFlags: public T { public: BitFlags(){_flags=0;} int &Flags() {return _flags; } int Flags() const {return _flags; } const int & cFlags() const {return _flags; } template void ImportData(const RightF & rightF){ Flags() = rightF.cFlags();T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFlags() { return true; } static void Name(std::vector & name){name.push_back(std::string("BitFlags"));T::Name(name);} private: int _flags; }; /*-------------------------- Color Mark Quality ----------------------------------*/ template class Color: public T { public: typedef A ColorType; Color():_color(vcg::Color4b::White) {} ColorType &C() { return _color; } const ColorType &cC() const { return _color; } template void ImportData(const RightF & rightF){ C() = rightF.cC();T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFaceColor() { return true; } static void Name(std::vector & name){name.push_back(std::string("Color"));T::Name(name);} private: ColorType _color; }; template class WedgeColor: public T { public: typedef A ColorType; ColorType &WC(const int i) { return _color[i]; } const ColorType &WC(const int i) const { return _color[i]; } const ColorType &cWC(const int i) const { return _color[i]; } template void ImportData(const RightF & rightF){ if (RightF::HasWedgeColor()) { for (int i=0; i<3; ++i) { WC(i) = rightF.cWC(i); } T::ImportData(rightF); } } static bool HasWedgeColor() { return true; } static void Name(std::vector & name){name.push_back(std::string("WedgeColor"));T::Name(name);} private: ColorType _color[3]; }; template class WedgeColor4b: public WedgeColor { public: static void Name(std::vector & name){name.push_back(std::string("WedgeColor4b"));T::Name(name);} }; template class WedgeColor4f: public WedgeColor { public: static void Name(std::vector & name){name.push_back(std::string("WedgeColor4f"));T::Name(name);} }; template class Color4b: public Color { public: public: static void Name(std::vector & name){name.push_back(std::string("Color4b"));T::Name(name);} }; /*-------------------------- Quality ----------------------------------*/ template class Quality: public T { public: typedef A QualityType; QualityType &Q() { return _quality; } const QualityType &cQ() const { return _quality; } template void ImportData(const RightF & rightF){ if(RightF::HasFaceQuality()) Q() = rightF.cQ();T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFaceQuality() { return true; } static bool HasFaceQualityOcc() { return true; } static void Name(std::vector & name){name.push_back(std::string("Quality"));T::Name(name);} private: QualityType _quality; }; template class Qualitys: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualitys"));T::Name(name);} }; template class Qualityf: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityf"));T::Name(name);} }; template class Qualityd: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityd"));T::Name(name);} }; /*-------------------------- Quality3 ----------------------------------*/ template class Quality3: public T { public: typedef vcg::Point3 Quality3Type; Quality3Type &Q3() { return _quality; } const Quality3Type &cQ3() const { return _quality; } template void ImportData(const RightF & rightF){ if(RightF::HasFaceQuality3()) Q3() = rightF.cQ3();T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFaceQuality3() { return true; } static bool HasFaceQuality3Occ() { return true; } static void Name(std::vector & name){name.push_back(std::string("Quality3"));T::Name(name);} private: Quality3Type _quality; }; template class Quality3s: public Quality3 { public: static void Name(std::vector & name){name.push_back(std::string("Quality3s"));T::Name(name);} }; template class Quality3f: public Quality3 { public: static void Name(std::vector & name){name.push_back(std::string("Quality3f"));T::Name(name);} }; template class Quality3d: public Quality3 { public: static void Name(std::vector & name){name.push_back(std::string("Quality3d"));T::Name(name);} }; /*-------------------------- INCREMENTAL MARK ----------------------------------------*/ template class Mark: public T { public: static bool HasMark() { return true; } inline void InitIMark() { _imark = 0; } inline int & IMark() { return _imark;} inline const int & IMark() const {return _imark;} template void ImportData(const RightF & rightF){ IMark() = rightF.IMark();T::ImportData(rightF);} static void Name(std::vector & name){name.push_back(std::string("Mark"));T::Name(name);} private: int _imark; }; /*-------------------------- Curvature Direction ----------------------------------*/ template struct CurvatureDirBaseType{ typedef Point3 VecType; typedef S ScalarType; CurvatureDirBaseType () {} Point3max_dir,min_dir; // max and min curvature direction S k1,k2;// max and min curvature values }; template class CurvatureDir: public TT { public: typedef A CurvatureDirType; typedef typename CurvatureDirType::VecType VecType; typedef typename CurvatureDirType::ScalarType ScalarType; VecType &PD1(){ return _curv.max_dir;} VecType &PD2(){ return _curv.min_dir;} const VecType &cPD1() const {return _curv.max_dir;} const VecType &cPD2() const {return _curv.min_dir;} ScalarType &K1(){ return _curv.k1;} ScalarType &K2(){ return _curv.k2;} const ScalarType &cK1() const {return _curv.k1;} const ScalarType &cK2()const {return _curv.k2;} template < class LeftV> void ImportData(const LeftV & left ) { if(LeftV::HasCurvatureDir()) { PD1() = left.cPD1(); PD2() = left.cPD2(); K1() = left.cK1(); K2() = left.cK2(); } TT::ImportData( left); } static bool HasCurvatureDir() { return true; } static void Name(std::vector & name){name.push_back(std::string("CurvatureDir"));TT::Name(name);} private: CurvatureDirType _curv; }; template class CurvatureDirf: public CurvatureDir, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirf"));T::Name(name);} }; template class CurvatureDird: public CurvatureDir, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDird"));T::Name(name);} }; /*----------------------------- VFADJ ------------------------------*/ template class VFAdj: public T { public: VFAdj(){ _vfp[0]=0; _vfp[1]=0; _vfp[2]=0; } typename T::FacePointer &VFp(const int j) { assert(j>=0 && j<3); return _vfp[j]; } typename T::FacePointer const VFp(const int j) const { assert(j>=0 && j<3); return _vfp[j]; } typename T::FacePointer const cVFp(const int j) const { assert(j>=0 && j<3); return _vfp[j]; } char &VFi(const int j) {return _vfi[j]; } template void ImportData(const RightF & rightF){T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasVFAdjacency() { return true; } static bool HasVFAdjacencyOcc() { return false; } static void Name(std::vector & name){name.push_back(std::string("VFAdj"));T::Name(name);} private: typename T::FacePointer _vfp[3] ; char _vfi[3] ; }; /*----------------------------- FFADJ ------------------------------*/ template class FFAdj: public T { public: FFAdj(){ _ffp[0]=0; _ffp[1]=0; _ffp[2]=0; } typename T::FacePointer &FFp(const int j) { assert(j>=0 && j<3); return _ffp[j]; } typename T::FacePointer const FFp(const int j) const { assert(j>=0 && j<3); return _ffp[j]; } typename T::FacePointer const cFFp(const int j) const { assert(j>=0 && j<3); return _ffp[j]; } char &FFi(const int j) { return _ffi[j]; } const char &cFFi(const int j) const { return _ffi[j]; } typename T::FacePointer &FFp1( const int j ) { return FFp((j+1)%3);} typename T::FacePointer &FFp2( const int j ) { return FFp((j+2)%3);} typename T::FacePointer const FFp1( const int j ) const { return FFp((j+1)%3);} typename T::FacePointer const FFp2( const int j ) const { return FFp((j+2)%3);} template void ImportData(const RightF & rightF){T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFFAdjacency() { return true; } static bool HasFFAdjacencyOcc() { return false; } static void Name(std::vector & name){name.push_back(std::string("FFAdj"));T::Name(name);} private: typename T::FacePointer _ffp[3] ; char _ffi[3] ; }; /*----------------------------- FEADJ ------------------------------*/ template class FEAdj: public T { public: FEAdj(){ _fep[0]=0; _fep[1]=0; _fep[2]=0; } typename T::EdgePointer &FEp(const int j) { assert(j>=0 && j<3); return _fep[j]; } typename T::EdgePointer const FEp(const int j) const { assert(j>=0 && j<3); return _fep[j]; } typename T::EdgePointer const cFEp(const int j) const { assert(j>=0 && j<3); return _fep[j]; } char &FEi(const int j) { return _fei[j]; } const char &cFEi(const int j) const { return _fei[j]; } typename T::EdgePointer &FEp1( const int j ) { return FEp((j+1)%3);} typename T::EdgePointer &FEp2( const int j ) { return FEp((j+2)%3);} typename T::EdgePointer const FEp1( const int j ) const { return FEp((j+1)%3);} typename T::EdgePointer const FEp2( const int j ) const { return FEp((j+2)%3);} template void ImportData(const RightF & rightF){T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFEAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("FEAdj"));T::Name(name);} private: typename T::EdgePointer _fep[3] ; char _fei[3] ; }; /*----------------------------- FHADJ ------------------------------*/ template class FHAdj: public T { public: FHAdj(){_fh=0;} typename T::HEdgePointer &FHp( ) { return _fh; } typename T::HEdgePointer const cFHp( ) const { return _fh; } template void ImportData(const RightF & rightF){T::ImportData(rightF);} inline void Alloc(const int & ns){T::Alloc(ns);} inline void Dealloc(){T::Dealloc();} static bool HasFHAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("FHAdj"));T::Name(name);} private: typename T::HEdgePointer _fh ; }; } // end namespace face }// end namespace vcg #endif