/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef FITMAPS_H #define FITMAPS_H #include #include #include #include #include #include #include #include #include #include #include "vcg/complex/algorithms/update/curvature_fitting.h" #include #include #include #include #include #include #include using namespace Eigen; namespace vcg { namespace tri { template class Fitmaps { public: typedef typename MeshType::FaceType FaceType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::CoordType CoordType; typedef vcg::tri::Nring RingWalker; class Bicubic { public: Bicubic() {}; Bicubic(vector& input) { data = input; if (input.size() != 16) { assert(0); } } // (u3 u2 u 1) (v3 v2 v 1) // // a u3 v3 // b u3 v2 // c u3 v1 // d u3 1 // e u2 v3 // f u2 v2 // g u2 v1 // h u2 1 // i u1 v3 // l u1 v2 // m u1 v1 // n u1 1 // o 1 v3 // p 1 v2 // q 1 v1 // r 1 1 double& a() { return data[0];} double& b() { return data[1];} double& c() { return data[2];} double& d() { return data[3];} double& e() { return data[4];} double& f() { return data[5];} double& g() { return data[6];} double& h() { return data[7];} double& i() { return data[8];} double& l() { return data[9];} double& m() { return data[10];} double& n() { return data[11];} double& o() { return data[12];} double& p() { return data[13];} double& q() { return data[14];} double& r() { return data[15];} vector data; double evaluate(double u, double v) { return a() * u*u*u * v*v*v + b() * u*u*u * v*v + c() * u*u*u * v + d() * u*u*u + e() * u*u * v*v*v + f() * u*u * v*v + g() * u*u * v + h() * u*u + i() * u * v*v*v + l() * u * v*v + m() * u * v + n() * u + o() * v*v*v + p() * v*v + q() * v + r(); } double distanceRMS(std::vector& VV) { double error = 0; for(typename std::vector::iterator it = VV.begin(); it != VV.end(); ++it) { double u = it->X(); double v = it->Y(); double n = it->Z(); double temp = evaluate(u,v); error += (n - temp)*(n - temp); } error /= (double) VV.size(); return sqrt(error); } static Bicubic fit(std::vector VV) { assert(VV.size() >= 16); Eigen::MatrixXf A(VV.size(),16); Eigen::MatrixXf b(VV.size(),1); Eigen::MatrixXf sol(16,1); for(unsigned int c=0; c < VV.size(); ++c) { double u = VV[c].X(); double v = VV[c].Y(); double n = VV[c].Z(); A(c,0) = u*u*u * v*v*v; A(c,1) = u*u*u * v*v; A(c,2) = u*u*u * v; A(c,3) = u*u*u; A(c,4) = u*u * v*v*v; A(c,5) = u*u * v*v; A(c,6) = u*u * v; A(c,7) = u*u; A(c,8) = u * v*v*v; A(c,9) = u * v*v; A(c,10) = u * v; A(c,11) = u; A(c,12) = v*v*v; A(c,13) = v*v; A(c,14) = v; A(c,15) = 1; b[c] = n; } A.svd().solve(b, &sol); vector r(16); for (int i=0; i < 16; ++i) r.at(i) = sol[i]; return Bicubic(r); } }; Fitmaps() {} class radSorter { public: radSorter(VertexType* v) { origin = v; } VertexType* origin; bool operator() (VertexType* v1, VertexType* v2) { return (v1->P() - origin->P()).SquaredNorm() < (v2->P() - origin->P()).SquaredNorm(); } }; float getMeanCurvature(VertexType* vp) { return (vp->K1() + vp->K2())/2.0; } static bool fitBicubicPoints(VertexType* v, std::vector& ref, Bicubic& ret, std::vector& points, std::vector& ring) { points.clear(); if (ring.size() < 16) { return false; } typename std::vector::iterator b = ring.begin(); typename std::vector::iterator e = ring.end(); while(b != e) { CoordType vT = (*b)->P() - v->P(); double x = vT * ref[0]; double y = vT * ref[1]; double z = vT * ref[2]; points.push_back(CoordType(x,y,z)); ++b; } ret = Bicubic::fit(points); return true; } static double AverageEdgeLenght(MeshType& m) { double doubleA = 0; for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) { doubleA+=vcg::DoubleArea(*fi); } int nquads = m.fn / 2; return sqrt( doubleA/(2*nquads) ); } static void computeMFitmap(MeshType& m, float perc, int ringMax = 50) { vcg::tri::UpdateCurvatureFitting::computeCurvature(m); vcg::tri::UpdateNormals::PerVertexAngleWeighted(m); vcg::tri::UpdateTopology::FaceFace(m); vcg::tri::UpdateTopology::VertexFace(m); vcg::tri::UpdateBounding::Box(m); int countTemp = 0; RingWalker::clearFlags(&m); for(VertexIterator it=m.vert.begin(); it!=m.vert.end();++it) { if ((countTemp++ % 100) == 0) cerr << countTemp << "/" << m.vert.size() << endl; RingWalker rw(&*it,&m); CoordType nor = it->N(); float okfaces = 0; float flipfaces = 0; int count = 0; do { count++; rw.expand(); for(unsigned i=0; iN(); vet1.Normalize(); vet2.Normalize(); double scal = vet1 * vet2; if ((scal) > 0) okfaces += (vcg::DoubleArea(*rw.lastF[i])); else flipfaces += (vcg::DoubleArea(*rw.lastF[i])); } } while ((((flipfaces)/(okfaces + flipfaces))*100.0 < perc) && (count < ringMax)); std::sort(rw.lastV.begin(),rw.lastV.end(),radSorter(&*it)); it->Q() = ((*rw.lastV.begin())->P() - it->P()).Norm(); rw.clear(); } vcg::tri::Smooth::VertexQualityLaplacian(m,2); } static vector gatherNeighsSurface(VertexType* vt, float sigma, MeshType& m) { vector current; RingWalker rw(vt,&m); bool exit = false; do { rw.expand(); exit = true; for(typename vector::iterator it = rw.lastV.begin(); it != rw.lastV.end(); ++it) { if (((*it)->P() - vt->P()).Norm() < sigma) { current.push_back(*it); exit = false; } } } while (!exit); rw.clear(); return current; } static void computeSFitmap(MeshType& m)//, float target = 1000) { vcg::tri::UpdateCurvatureFitting::computeCurvature(m); vcg::tri::UpdateNormals::PerVertexAngleWeighted(m); vcg::tri::UpdateTopology::FaceFace(m); vcg::tri::UpdateTopology::VertexFace(m); // update bounding box vcg::tri::UpdateBounding::Box(m); int countTemp = 0; double e = AverageEdgeLenght(m); int iteraz = 5; //2.0 * sqrt(m.vert.size()/target); for(VertexIterator it=m.vert.begin(); it!=m.vert.end();++it) { if ((countTemp++ % 100) == 0) cerr << countTemp << "/" << m.vert.size() << endl; vector oneX; for (int iteration = 0; iteration ref(3); ref[0] = it->PD1(); ref[1] = it->PD2(); ref[2] = it->PD1() ^ it->PD2(); ref[0].Normalize(); ref[1].Normalize(); ref[2].Normalize(); Bicubic b; RingWalker::clearFlags(&m); std::vector pointsGlobal = gatherNeighsSurface(&*it,oneX.at(iteraz-1),m); vector onedimensional; for (int iteration = 0; iteration points; // solo quelli nel raggio std::vector projected; // come sopra ma in coord locali for (typename std::vector::iterator it2 = pointsGlobal.begin(); it2 != pointsGlobal.end(); ++it2) { if (((*it).P() - (*it2)->P()).Norm() < oneX.at(iteration)) points.push_back(*it2); } std::vector& pointsFitting = points; if (!fitBicubicPoints(&*it, ref, b, projected,pointsFitting)) { onedimensional.push_back(0); } else { onedimensional.push_back(b.distanceRMS(projected)); } } // // vecchio fit ax^4 Eigen::MatrixXf Am(onedimensional.size(),1); Eigen::MatrixXf bm(onedimensional.size(),1); Eigen::MatrixXf sol(1,1); for(unsigned int c=0; c < onedimensional.size(); ++c) { double x = oneX.at(c); Am(c,0) = pow(x,4); bm[c] = onedimensional[c]; } Am.svd().solve(bm, &sol); it->Q() = pow((double)sol[0],0.25); // // nuovo fit ax^4 + b // Eigen::MatrixXf Am(onedimensional.size()+1,2); // Eigen::MatrixXf bm(onedimensional.size()+1,1); // Eigen::MatrixXf sol(2,1); // // Am(0,0) = 0; // Am(0,1) = 0; // bm[0] = 0; // // for(unsigned int c=0; c < onedimensional.size(); ++c) // { // double x = oneX.at(c); // // Am(c,0) = pow(x,4); // Am(c,1) = 1; // bm[c] = onedimensional[c]; // } // // //sol = ((Am.transpose()*Am).inverse()*Am.transpose())*bm; // Am.svd().solve(bm, &sol); // // cerr << "------" << sol[0] << " " << sol[1] << endl; // if (sol[0] > 0) // saliency[it] = pow((double)sol[0],0.25); // else // saliency[it] = 0; } vcg::tri::Smooth::VertexQualityLaplacian(m,1); } ~Fitmaps(){}; }; }} // END NAMESPACES #endif // FITMAPS_H