/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: point_matching.h,v $ ****************************************************************************/ #ifndef _VCG_MATH_POINTMATCHING_H #define _VCG_MATH_POINTMATCHING_H #include #include #include namespace vcg { template class PointMatching { public: typedef Point3 Point3x; typedef Matrix33 Matrix33x; typedef Matrix44 Matrix44x; typedef Quaternion Quaternionx; /* Compute a similarity matching (rigid + uniform scaling) simply create a temporary point set with the correct scaling factor */ static bool ComputeSimilarityMatchMatrix( Matrix44x &res, std::vector &Pfix, // vertici corrispondenti su fix (rossi) std::vector &Pmov) // normali scelti su mov (verdi) { Quaternionx qtmp; Point3x tr; std::vector Pnew(Pmov.size()); ScalarType scalingFactor=0; for(size_t i=0;i<( Pmov.size()-1);++i) { scalingFactor += Distance(Pmov[i],Pmov[i+1])/ Distance(Pfix[i],Pfix[i+1]); qDebug("Scaling Factor is %f",scalingFactor/(i+1)); } scalingFactor/=(Pmov.size()-1); for(size_t i=0;i &Pfix, // vertici corrispondenti su fix (rossi) std::vector &Pmov) // normali scelti su mov (verdi) { Quaternionx qtmp; Point3x tr; return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr); } static bool ComputeRigidMatchMatrix(std::vector weights, Matrix44x &res, std::vector &Pfix, // vertici corrispondenti su fix (rossi) std::vector &Pmov) // normali scelti su mov (verdi) { Quaterniond qtmp; Point3d tr; return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr); } /* Calcola la matrice di rototraslazione che porta i punti Pmov su Pfix Basata sul paper Besl, McKay A method for registration o f 3d Shapes IEEE TPAMI Vol 14, No 2 1992 Esempio d'uso const int np=1000; std::vector pfix(np),pmov(np); Matrix44x Rot,Trn,RotRes; Rot.Rotate(30,Point3x(1,0,1)); Trn.Translate(0,0,100); Rot=Trn*Rot; for(int i=0;i &Pfix, std::vector &Pmov, std::vector weights, Quaternionx &q, Point3x &tr ) { Matrix33x tmp; Matrix33x ccm; Point3x bfix,bmov; // baricenter of src e trg ccm.WeightedCrossCovariance(weights,Pmov,Pfix,bmov,bfix); Matrix33x cyc; // the cyclic components of the cross covariance matrix. cyc=ccm; tmp=ccm; tmp.Trasp(); cyc-=tmp; Matrix44x QQ; QQ.Zero(); Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]); Matrix33x RM; RM.Zero(); RM[0][0]=-ccm.Trace(); RM[1][1]=-ccm.Trace(); RM[2][2]=-ccm.Trace(); RM+=ccm; ccm.Trasp(); RM+=ccm; QQ[0][0] = ccm.Trace(); QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2]; QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2]; int i,j; for(i=0;i<3;i++) for(j=0;j<3;j++) QQ[i+1][j+1]=RM[i][j]; // printf(" Quaternion Matrix\n"); // print(QQ); Point4d d; Matrix44x v; int nrot; QQ.Jacobi(d,v,nrot); // printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]); // print(v); // Now search the maximum eigenvalue double maxv=0; int maxind=-1; for(i=0;i<4;i++) if(maxv &Pfix, std::vector &Pmov, Quaternionx &q, Point3x &tr) { Matrix33x tmp; Matrix33x ccm; Point3x bfix,bmov; // baricenter of src e trg ccm.CrossCovariance(Pmov,Pfix,bmov,bfix); Matrix33x cyc; // the cyclic components of the cross covariance matrix. cyc=ccm; tmp=ccm; tmp.Transpose(); cyc-=tmp; Matrix44x QQ; QQ.SetZero(); Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]); Matrix33x RM; RM.SetZero(); RM[0][0]=-ccm.Trace(); RM[1][1]=-ccm.Trace(); RM[2][2]=-ccm.Trace(); RM+=ccm; ccm.Transpose(); RM+=ccm; QQ[0][0] = ccm.Trace(); QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2]; QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2]; int i,j; for(i=0;i<3;i++) for(j=0;j<3;j++) QQ[i+1][j+1]=RM[i][j]; // printf(" Quaternion Matrix\n"); // print(QQ); Point4d d; Matrix44x v; int nrot; //QQ.Jacobi(d,v,nrot); Jacobi(QQ,d,v,nrot); // printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]); // print(v); // Now search the maximum eigenvalue double maxv=0; int maxind=-1; for(i=0;i<4;i++) if(maxv &Ps, // vertici corrispondenti su src (rossi) std::vector &Ns, // normali corrispondenti su src (rossi) std::vector &Pt) // vertici scelti su trg (verdi) // vector &Nt) // normali scelti su trg (verdi) { int sz=Ps.size(); assert(0); // Da qui in poi non compila che ha bisogno dei minimiquadrati #if 0 Matrix A(sz,12); Vector b(sz); Vector x(12); //inizializzo il vettore per minimi quadrati // la matrice di trasf che calcolo con LeastSquares cerca avvicinare il piu' // possibile le coppie di punti che trovo ho scelto // Le coppie di punti sono gia' trasformate secondo la matrice quindi come scelta iniziale // per il metodo minimiquadrati scelgo l'identica (e.g. se ho allineato a mano perfettamente e // le due mesh sono perfettamente uguali DEVE restituire l'identica) res.SetIdentity(); int i,j,k; for(i=0; i<=2; ++i) for(j=0; j<=3; ++j) x[i*4+j] = res[i][j]; //costruzione della matrice for(i=0;i & A2, const Point3x & p, const Point3x & n, double d ) { double t1 = p[0]*p[0]; double t2 = n[0]*n[0]; double t4 = t1*n[0]; double t5 = t4*n[1]; double t6 = t4*n[2]; double t7 = p[0]*t2; double t8 = t7*p[1]; double t9 = p[0]*n[0]; double t10 = p[1]*n[1]; double t11 = t9*t10; double t12 = p[1]*n[2]; double t13 = t9*t12; double t14 = t7*p[2]; double t15 = p[2]*n[1]; double t16 = t9*t15; double t17 = p[2]*n[2]; double t18 = t9*t17; double t19 = t9*n[1]; double t20 = t9*n[2]; double t21 = t9*d; double t22 = n[1]*n[1]; double t25 = t1*n[1]*n[2]; double t26 = p[0]*t22; double t27 = t26*p[1]; double t28 = p[0]*n[1]; double t29 = t28*t12; double t30 = t26*p[2]; double t31 = t28*t17; double t32 = t28*n[2]; double t33 = t28*d; double t34 = n[2]*n[2]; double t36 = p[0]*t34; double t41 = p[1]*p[1]; double t43 = t41*n[0]; double t46 = p[1]*t2; double t48 = p[1]*n[0]; double t49 = t48*t15; double t50 = t48*t17; double t51 = t48*n[1]; double t52 = t48*n[2]; double t57 = p[1]*t22; double t59 = t10*t17; double t60 = t10*n[2]; double t63 = p[1]*t34; double t66 = p[2]*p[2]; double t68 = t66*n[0]; double t72 = p[2]*n[0]; double t73 = t72*n[1]; double t74 = t72*n[2]; double t80 = t15*n[2]; A2[0][0] = t1*t2; A2[0][1] = t5; A2[0][2] = t6; A2[0][3] = t8; A2[0][4] = t11; A2[0][5] = t13; A2[0][6] = t14; A2[0][7] = t16; A2[0][8] = t18; A2[0][9] = t7; A2[0][10] = t19; A2[0][11] = t20; A2[0][12] = -t21; A2[1][1] = t1*t22; A2[1][2] = t25; A2[1][3] = t11; A2[1][4] = t27; A2[1][5] = t29; A2[1][6] = t16; A2[1][7] = t30; A2[1][8] = t31; A2[1][9] = t19; A2[1][10] = t26; A2[1][11] = t32; A2[1][12] = -t33; A2[2][2] = t1*t34; A2[2][3] = t13; A2[2][4] = t29; A2[2][5] = t36*p[1]; A2[2][6] = t18; A2[2][7] = t31; A2[2][8] = t36*p[2]; A2[2][9] = t20; A2[2][10] = t32; A2[2][11] = t36; A2[2][12] = -p[0]*n[2]*d; A2[3][3] = t41*t2; A2[3][4] = t43*n[1]; A2[3][5] = t43*n[2]; A2[3][6] = t46*p[2]; A2[3][7] = t49; A2[3][8] = t50; A2[3][9] = t46; A2[3][10] = t51; A2[3][11] = t52; A2[3][12] = -t48*d; A2[4][4] = t41*t22; A2[4][5] = t41*n[1]*n[2]; A2[4][6] = t49; A2[4][7] = t57*p[2]; A2[4][8] = t59; A2[4][9] = t51; A2[4][10] = t57; A2[4][11] = t60; A2[4][12] = -t10*d; A2[5][5] = t41*t34; A2[5][6] = t50; A2[5][7] = t59; A2[5][8] = t63*p[2]; A2[5][9] = t52; A2[5][10] = t60; A2[5][11] = t63; A2[5][12] = -t12*d; A2[6][6] = t66*t2; A2[6][7] = t68*n[1]; A2[6][8] = t68*n[2]; A2[6][9] = p[2]*t2; A2[6][10] = t73; A2[6][11] = t74; A2[6][12] = -t72*d; A2[7][7] = t66*t22; A2[7][8] = t66*n[1]*n[2]; A2[7][9] = t73; A2[7][10] = p[2]*t22; A2[7][11] = t80; A2[7][12] = -t15*d; A2[8][8] = t66*t34; A2[8][9] = t74; A2[8][10] = t80; A2[8][11] = p[2]*t34; A2[8][12] = -t17*d; A2[9][9] = t2; A2[9][10] = n[0]*n[1]; A2[9][11] = n[0]*n[2]; A2[9][12] = -n[0]*d; A2[10][10] = t22; A2[10][11] = n[1]*n[2]; A2[10][12] = -n[1]*d; A2[11][11] = t34; A2[11][12] = -n[2]*d; A2[12][12] = d*d; } // Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione // che li fa corrispondere static bool ComputeMatchMatrix2( Matrix44x &res, std::vector &Ps, // vertici corrispondenti su src (rossi) std::vector &Ns, // normali corrispondenti su src (rossi) std::vector &Pt) // vertici scelti su trg (verdi) //vector &Nt) // normali scelti su trg (verdi) { const int N = 13; int i,j,k; Matrixd AT(N,N); Matrixd TT(N,N); // Azzeramento matrice totale (solo tri-superiore) for(i=0;i q; double error; affine_ls2(AT,q,error); //printf("error: %g \n",error); res[0][0] = q[0]; res[0][1] = q[1]; res[0][2] = q[2]; res[0][3] = 0; res[1][0] = q[3]; res[1][1] = q[4]; res[1][2] = q[5]; res[1][3] = 0; res[2][0] = q[6]; res[2][1] = q[7]; res[2][2] = q[8]; res[2][3] = 0; res[3][0] = q[9]; res[3][1] = q[10]; res[3][2] = q[11]; res[3][3] = q[12]; return true; } */ }; } // end namespace #endif