/****************************************************************************
* VCGLib                                                            o o     *
* Visual and Computer Graphics Library                            o     o   *
*                                                                _   O  _   *
* Copyright(C) 2004                                                \/)\/    *
* Visual Computing Lab                                            /\/|      *
* ISTI - Italian National Research Council                           |      *
*                                                                    \      *
* All rights reserved.                                                      *
*                                                                           *
* This program is free software; you can redistribute it and/or modify      *   
* it under the terms of the GNU General Public License as published by      *
* the Free Software Foundation; either version 2 of the License, or         *
* (at your option) any later version.                                       *
*                                                                           *
* This program is distributed in the hope that it will be useful,           *
* but WITHOUT ANY WARRANTY; without even the implied warranty of            *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt)          *
* for more details.                                                         *
*                                                                           *
****************************************************************************/
/****************************************************************************
  History

$Log: not supported by cvs2svn $
Revision 1.26  2006/11/13 13:03:45  ponchio
Added GetBBox in Point3 (declaration) the body of the function is in box3.h

Revision 1.25  2006/10/13 12:59:24  cignoni
Added **explicit** constructor from three coords of a different scalartype

Revision 1.24  2006/09/28 13:37:35  m_di_benedetto
added non const * V()

Revision 1.23  2005/11/09 16:11:55  cignoni
Added Abs and LowClampToZero

Revision 1.22  2005/09/14 14:09:21  m_di_benedetto
Added specialized Convert() for the same scalar type.

Revision 1.21  2005/05/06 14:45:33  spinelli
cambiato parentesi nel costruttore di GetUV per rendere compatibile tale costruttore con MVC e borland

Revision 1.20  2005/04/27 16:05:19  callieri
line 466, added parentesis on default value creator getUV [borland]

Revision 1.19  2004/11/09 15:49:07  ganovelli
added GetUV

Revision 1.18  2004/10/13 12:45:51  cignoni
Better Doxygen documentation

Revision 1.17  2004/09/10 14:01:40  cignoni
Added polar to cartesian

Revision 1.16  2004/03/21 17:14:56  ponchio
Added a math::

Revision 1.15  2004/03/07 22:45:32  cignoni
Moved quality and normal functions to the triangle class.

Revision 1.14  2004/03/05 17:55:01  tarini
errorino: upper case in Zero()

Revision 1.13  2004/03/03 14:22:48  cignoni
Yet against cr lf mismatch

Revision 1.12  2004/02/23 23:42:26  cignoni
Translated comments, removed unusued stuff. corrected linefeed/cr

Revision 1.11  2004/02/19 16:12:28  cignoni
cr lf mismatch 2

Revision 1.10  2004/02/19 16:06:24  cignoni
cr lf mismatch

Revision 1.8  2004/02/19 15:13:40  cignoni
corrected sqrt and added doxygen groups

Revision 1.7  2004/02/17 02:08:47  cignoni
Di prova...

Revision 1.6  2004/02/15 23:35:47  cignoni
Cambiato nome type template in accordo alla styleguide

Revision 1.5  2004/02/10 01:07:15  cignoni
Edited Comments and GPL license

Revision 1.4  2004/02/09 13:48:02  cignoni
Edited doxygen comments
****************************************************************************/

#ifndef __VCGLIB_POINT3
#define __VCGLIB_POINT3

#include <assert.h>
#include <vcg/math/base.h>

namespace vcg {

/** \addtogroup space */
/*@{*/
    /**
        The templated class for representing a point in 3D space.
        The class is templated over the ScalarType class that is used to represent coordinates. All the usual
        operator overloading (* + - ...) is present. 
     */
template <class T> class Box3;

template <class P3ScalarType> class Point3
{
protected:
  /// The only data member. Hidden to user.
	P3ScalarType _v[3];

public:
	typedef P3ScalarType ScalarType;
	enum {Dimension = 3};
	
	
//@{

  /** @name Standard Constructors and Initializers 
   No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
   **/

  inline Point3 () { }
	inline Point3 ( const P3ScalarType nx, const P3ScalarType ny, const P3ScalarType nz )
	{
		_v[0] = nx;
		_v[1] = ny;
		_v[2] = nz;
	}
	inline Point3 ( Point3 const & p )
	{   
		_v[0]= p._v[0];
		_v[1]= p._v[1];
		_v[2]= p._v[2];
	}
	inline Point3 ( const P3ScalarType nv[3] )
	{
		_v[0] = nv[0];
		_v[1] = nv[1];
		_v[2] = nv[2];
	}
	inline Point3 & operator =( Point3 const & p )
	{
			_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2];
			return *this;
	}
	inline void SetZero()
	{
		_v[0] = 0;
		_v[1] = 0;
		_v[2] = 0;
	}
  
  /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. 
  /// Useful for managing in a consistent way object that could have point2 / point3 / point4
	inline P3ScalarType Ext( const int i ) const
	{
		if(i>=0 && i<=2) return _v[i];
		else             return 0;
	}

	template <class Q>
	inline void Import( const Point3<Q> & b )
	{
		_v[0] = P3ScalarType(b[0]);
		_v[1] = P3ScalarType(b[1]);
		_v[2] = P3ScalarType(b[2]);
	}

  template <class Q> 
  static inline Point3 Construct( const Point3<Q> & b )
  {
    return Point3(P3ScalarType(b[0]),P3ScalarType(b[1]),P3ScalarType(b[2]));
  }

  template <class Q> 
  static inline Point3 Construct( const Q & P0, const Q & P1, const Q & P2)
  {
    return Point3(P3ScalarType(P0),P3ScalarType(P1),P3ScalarType(P2));
  }

  static inline Point3 Construct( const Point3<ScalarType> & b )
  {
    return b;
  }

//@}

//@{

  /** @name Data Access. 
   access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/

	inline P3ScalarType & operator [] ( const int i )
	{
		assert(i>=0 && i<3);
		return _v[i];
	}
	inline const P3ScalarType & operator [] ( const int i ) const
	{
		assert(i>=0 && i<3);
		return _v[i];
	}
  inline const P3ScalarType &X() const { return _v[0]; } 
	inline const P3ScalarType &Y() const { return _v[1]; }
	inline const P3ScalarType &Z() const { return _v[2]; }
	inline P3ScalarType &X() { return _v[0]; }
	inline P3ScalarType &Y() { return _v[1]; }
	inline P3ScalarType &Z() { return _v[2]; }
	inline const P3ScalarType * V() const
	{
		return _v;
	}
	inline P3ScalarType * V()
	{
		return _v;
	}
	inline P3ScalarType & V( const int i )
	{
		assert(i>=0 && i<3);
		return _v[i];
	}
	inline const P3ScalarType & V( const int i ) const
	{
		assert(i>=0 && i<3);
		return _v[i];
	}
//@}
//@{

  /** @name Classical overloading of operators 
  Note   
  **/

	inline Point3 operator + ( Point3 const & p) const
	{
		return Point3<P3ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] );
	}
	inline Point3 operator - ( Point3 const & p) const
	{
		return Point3<P3ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] );
	}
	inline Point3 operator * ( const P3ScalarType s ) const
	{
		return Point3<P3ScalarType>( _v[0]*s, _v[1]*s, _v[2]*s );
	}
	inline Point3 operator / ( const P3ScalarType s ) const
	{
		return Point3<P3ScalarType>( _v[0]/s, _v[1]/s, _v[2]/s );
	}
		/// Dot product
	inline P3ScalarType operator * ( Point3 const & p ) const
	{
		return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] );
	}
	inline P3ScalarType dot( const Point3 & p ) const { return (*this) * p; }
		/// Cross product
	inline Point3 operator ^ ( Point3 const & p ) const
	{
		return Point3 <P3ScalarType>
		(
			_v[1]*p._v[2] - _v[2]*p._v[1],
			_v[2]*p._v[0] - _v[0]*p._v[2],
			_v[0]*p._v[1] - _v[1]*p._v[0]
		);
	}

	inline Point3 & operator += ( Point3 const & p)
	{
		_v[0] += p._v[0];
		_v[1] += p._v[1];
		_v[2] += p._v[2];
		return *this;
	}
	inline Point3 & operator -= ( Point3 const & p)
	{
		_v[0] -= p._v[0];
		_v[1] -= p._v[1];
		_v[2] -= p._v[2];
		return *this;
	}
	inline Point3 & operator *= ( const P3ScalarType s )
	{
		_v[0] *= s;
		_v[1] *= s;
		_v[2] *= s;
		return *this;
	}
	inline Point3 & operator /= ( const P3ScalarType s )
	{
		_v[0] /= s;
		_v[1] /= s;
		_v[2] /= s;
		return *this;
	}
		// Norme
	inline P3ScalarType Norm() const
	{
    return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
	}
	inline P3ScalarType SquaredNorm() const
	{
		return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
	}
		// Scalatura differenziata
	inline Point3 & Scale( const P3ScalarType sx, const P3ScalarType sy, const P3ScalarType sz )
	{
		_v[0] *= sx;
		_v[1] *= sy;
		_v[2] *= sz;
		return *this;
	}
	inline Point3 & Scale( const Point3 & p )
	{
		_v[0] *= p._v[0];
		_v[1] *= p._v[1];
		_v[2] *= p._v[2];
		return *this;
	}

	// Normalizzazione
	inline Point3 & Normalize()
	{
		P3ScalarType n = P3ScalarType(math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]));
		if (n > P3ScalarType(0)) { _v[0] /= n; _v[1] /= n; _v[2] /= n; }
		return *this;
	}

	// for compatibility with eigen port
	inline Point3 & normalized() { return Normalize(); } 
	
	/** 
	 * Convert to polar coordinates from cartesian coordinates.
	 *
	 * Theta is the azimuth angle and ranges between [0, 2PI) degrees.
	 * Phi is the elevation angle (not the polar angle) and ranges between [-PI/2, PI/2] degrees.
	 *
	 * /note Note that instead of the classical polar angle, which ranges between 
	 *       0 and PI degrees we opt for the elevation angle to obtain a more 
	 *       intuitive spherical coordinate system.
	 */
	void ToPolarRad(P3ScalarType &ro, P3ScalarType &theta, P3ScalarType &phi) const
	{
		ro = Norm();
		theta = (P3ScalarType)atan2(_v[2], _v[0]);
		phi   = (P3ScalarType)asin(_v[1]/ro);
	}

	/**
	 * Convert from polar coordinates to cartesian coordinates.
	 *
	 * Theta is the azimuth angle and ranges between [0, 2PI) degrees.
	 * Phi is the elevation angle (not the polar angle) and ranges between [-90, 90] degrees.
	 *
	 * \note Note that instead of the classical polar angle, which ranges between 
	 *       0 and PI degrees, we opt for the elevation angle to obtain a more 
	 *       intuitive spherical coordinate system.
	 */
  void FromPolarRad(const P3ScalarType &ro, const P3ScalarType &theta, const P3ScalarType &phi)
	{
    _v[0]= ro*cos(theta)*cos(phi);
    _v[1]= ro*sin(phi);
    _v[2]= ro*sin(theta)*cos(phi);
	}
	
  Box3<P3ScalarType> GetBBox(Box3<P3ScalarType> &bb) const;
//@}
//@{

  /** @name Comparison Operators. 
   Note that the reverse z prioritized ordering, useful in many situations.
   **/

inline bool operator == ( Point3 const & p ) const
	{
		return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2];
	}
	inline bool operator != ( Point3 const & p ) const
	{
		return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2];
	}
	inline bool operator <  ( Point3 const & p ) const
	{
		return	(_v[2]!=p._v[2])?(_v[2]<p._v[2]):
				(_v[1]!=p._v[1])?(_v[1]<p._v[1]):
						       (_v[0]<p._v[0]);
	}
	inline bool operator >  ( Point3 const & p ) const
	{
		return	(_v[2]!=p._v[2])?(_v[2]>p._v[2]):
				(_v[1]!=p._v[1])?(_v[1]>p._v[1]):
							   (_v[0]>p._v[0]);
	}
	inline bool operator <= ( Point3 const & p ) const
	{
		return	(_v[2]!=p._v[2])?(_v[2]< p._v[2]):
				(_v[1]!=p._v[1])?(_v[1]< p._v[1]):
							   (_v[0]<=p._v[0]);
	}
	inline bool operator >= ( Point3 const & p ) const
	{
		return	(_v[2]!=p._v[2])?(_v[2]> p._v[2]):
				(_v[1]!=p._v[1])?(_v[1]> p._v[1]):
							   (_v[0]>=p._v[0]);
	}

	
	inline Point3 operator - () const
	{
		return Point3<P3ScalarType> ( -_v[0], -_v[1], -_v[2] );
	}
 //@}

}; // end class definition


template <class P3ScalarType>
inline P3ScalarType Angle( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{
	P3ScalarType w = p1.Norm()*p2.Norm();
	if(w==0) return -1;
	P3ScalarType t = (p1*p2)/w;
	if(t>1) t = 1;
	else if(t<-1) t = -1;
    return (P3ScalarType) acos(t);
}

// versione uguale alla precedente ma che assume che i due vettori sono unitari
template <class P3ScalarType>
inline P3ScalarType AngleN( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{
	P3ScalarType w = p1*p2;
	if(w>1) 
		w = 1;
	else if(w<-1) 
		w=-1;
  return (P3ScalarType) acos(w);
}


template <class P3ScalarType>
inline P3ScalarType Norm( Point3<P3ScalarType> const & p )
{
	return p.Norm();
}

template <class P3ScalarType>
inline P3ScalarType SquaredNorm( Point3<P3ScalarType> const & p )
{
    return p.SquaredNorm();
}

template <class P3ScalarType>
inline Point3<P3ScalarType> & Normalize( Point3<P3ScalarType> & p )
{
    p.Normalize();
    return p;
}

template <class P3ScalarType>
inline P3ScalarType Distance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
{
    return (p1-p2).Norm();
}

template <class P3ScalarType>
inline P3ScalarType SquaredDistance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
{
    return (p1-p2).SquaredNorm();
}

	// Dot product preciso numericamente (solo double!!)
	// Implementazione: si sommano i prodotti per ordine di esponente
	// (prima le piu' grandi)
template<class P3ScalarType>
double stable_dot ( Point3<P3ScalarType> const & p0, Point3<P3ScalarType> const & p1 )
{
	P3ScalarType k0 = p0._v[0]*p1._v[0];
	P3ScalarType k1 = p0._v[1]*p1._v[1];
	P3ScalarType k2 = p0._v[2]*p1._v[2];

	int exp0,exp1,exp2;

	frexp( double(k0), &exp0 );
	frexp( double(k1), &exp1 );
	frexp( double(k2), &exp2 );

	if( exp0<exp1 )
	{
		if(exp0<exp2)
			return (k1+k2)+k0;
		else
			return (k0+k1)+k2;
	}
	else
	{
		if(exp1<exp2)
			return(k0+k2)+k1;
		else
			return (k0+k1)+k2;
	}
}  



/// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
template<class P3ScalarType>
P3ScalarType PSDist( const Point3<P3ScalarType> & p,
			         const Point3<P3ScalarType> & v1,
					 const Point3<P3ScalarType> & v2,
			         Point3<P3ScalarType> & q )
{
    Point3<P3ScalarType> e = v2-v1;
    P3ScalarType  t = ((p-v1)*e)/e.SquaredNorm();
    if(t<0)      t = 0;
	else if(t>1) t = 1;
	q = v1+e*t;
    return Distance(p,q);
}


template <class P3ScalarType>
void GetUV( Point3<P3ScalarType> &n,Point3<P3ScalarType> &u, Point3<P3ScalarType> &v, Point3<P3ScalarType> up=(Point3<P3ScalarType>(0,1,0)) )
{
	n.Normalize();
	const double LocEps=double(1e-7);
	u=n^up;
  double len = u.Norm();
 	if(len < LocEps)
	{
		if(fabs(n[0])<fabs(n[1])){
			if(fabs(n[0])<fabs(n[2])) up=Point3<P3ScalarType>(1,0,0); // x is the min 
			                         else up=Point3<P3ScalarType>(0,0,1); // z is the min 
		}else {
			if(fabs(n[1])<fabs(n[2])) up=Point3<P3ScalarType>(0,1,0); // y is the min 
			                         else up=Point3<P3ScalarType>(0,0,1); // z is the min 
		}
		u=n^up;
	}
	u.Normalize();
	v=n^u;
	v.Normalize();
	Point3<P3ScalarType> uv=u^v;
}


template <class SCALARTYPE>
inline Point3<SCALARTYPE> Abs(const Point3<SCALARTYPE> & p) {
	return (Point3<SCALARTYPE>(math::Abs(p[0]), math::Abs(p[1]), math::Abs(p[2])));
}
// probably a more uniform naming should be defined...
template <class SCALARTYPE>
inline Point3<SCALARTYPE> LowClampToZero(const Point3<SCALARTYPE> & p) {
	return (Point3<SCALARTYPE>(math::Max(p[0], (SCALARTYPE)0), math::Max(p[1], (SCALARTYPE)0), math::Max(p[2], (SCALARTYPE)0)));
}

typedef Point3<short>  Point3s;
typedef Point3<int>	   Point3i;
typedef Point3<float>  Point3f;
typedef Point3<double> Point3d;

/*@}*/

} // end namespace

#endif