/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.4 2004/03/11 11:47:20 tarini minor updates, corrections, added documentations, etc. Revision 1.3 2004/03/10 15:27:18 tarini first version ****************************************************************************/ #ifndef __VCGLIB_RAY3 #define __VCGLIB_RAY3 #include namespace vcg { /** \addtogroup space */ /*@{*/ /** Templated class for 3D rays. This is the class for infinite rays in 3D space. A Ray is stored just as two Point3: an origin and a direction (not necessarily normalized). @param RayScalarType (template parameter) Specifies the type of scalar used to represent coords. @param NORM: if on, the direction is always Normalized */ template class Ray3 { public: /// The scalar type typedef RayScalarType ScalarType; /// The point type typedef Point3 PointType; /// The ray type typedef Ray3 RayType; private: /// Origin PointType _ori; /// Direction (not necessarily normalized, unless so specified by NORM) PointType _dir; public: //@{ /** @name Members to access the origin or direction Direction() cannot be assigned directly. Use SetDirection() or Set() instead. **/ /// inline const PointType &Origin() const { return _ori; } inline PointType &Origin() { return _ori; } inline const PointType &Direction() const { return _dir; } /// sets the origin inline void SetOrigin( const PointType & ori ) { _ori=ori; } /// sets the direction inline void SetDirection( const PointType & dir) { _dir=dir; if (NORM) _dir.Normalize(); } /// sets origin and direction. inline void Set( const PointType & ori, const PointType & dir ) { SetOrigin(ori); SetDirection(dir); } //@} //@{ /** @name Constructors **/ /// The empty constructor Ray3() {}; /// The (origin, direction) constructor Ray3(const PointType &ori, const PointType &dir) {SetOrigin(ori); SetDirection(dir);}; //@} /// Operator to compare two rays inline bool operator == ( RayType const & p ) const { return _ori==p._ori && _dir==p._dir; } /// Operator to dispare two rays inline bool operator != ( RayType const & p ) const { return _ori!=p._ori || _dir!=p._dir; } /// Projects a point on the ray inline ScalarType Projection( const PointType &p ) const { if (NORM) return ScalarType((p-_ori).dot(_dir)); else return ScalarType((p-_ori).dot(_dir)/_dir.SquaredNorm()); } /// returns wheter this type is normalized or not static bool IsNormalized() {return NORM;}; /// calculates the point of parameter t on the ray. inline PointType P( const ScalarType t ) const { return _ori + _dir * t; } /// normalizes direction field (returns a Normalized Ray) inline Ray3 &Normalize() { if (!NORM) _dir.Normalize(); return *((Ray3*)this);} /// normalizes direction field (returns a Normalized Ray) - static version static Ray3 &Normalize(RayType &p) { p.Normalize(); return *((Ray3*)(&p));} /// importer for different ray types (with any scalar type or normalization beaviour) template inline void Import( const Ray3 & b ) { _ori.Import( b.Origin() ); _dir.Import( b.Direction() ); if ((NORM) && (!K)) _dir.Normalize(); //printf("(=)%c->%c ",(!NORM)?'N':'n', NORM?'N':'n'); } /// constructs a new ray importing it from an existing one template static RayType Construct( const Ray3 & b ) { RayType res; res.Import(b); return res; } PointType ClosestPoint(const PointType & p) const{ return P(Projection(p)); } /// flips the ray inline void Flip(){ _dir=-_dir; }; //@{ /** @name Linearity for 3d rays (operators +, -, *, /) so a ray can be set as a linear combination of several rays. Note that the result of any operation returns a non-normalized ray; however, the command r0 = r1*a + r2*b is licit even if r0,r1,r2 are normalized rays, as the normalization will take place within the final assignement operation. **/ inline Ray3 operator + ( RayType const & p) const {return Ray3 ( _ori+p.Origin(), _dir+p.Direction() );} inline Ray3 operator - ( RayType const & p) const {return Ray3 ( _ori-p.Origin(), _dir-p.Direction() );} inline Ray3 operator * ( const ScalarType s ) const {return Ray3 ( _ori*s, _dir*s );} inline Ray3 operator / ( const ScalarType s ) const {ScalarType s0=((ScalarType)1.0)/s; return RayType( _ori*s0, _dir*s0 );} //@} //@{ /** @name Automatic normalized to non-normalized "Ray3dN r0 = r1" is equivalent to "Ray3dN r0 = r1.Normalize()" if r1 is a Ray3d **/ /// copy constructor that takes opposite beaviour Ray3(const Ray3 &r) { Import(r); }; /// assignment inline RayType & operator = ( Ray3 const &r) { Import(r); return *this; }; //@} }; // end class definition typedef Ray3 Ray3s; typedef Ray3 Ray3i; typedef Ray3 Ray3f; typedef Ray3 Ray3d; typedef Ray3 Ray3sN; typedef Ray3 Ray3iN; typedef Ray3 Ray3fN; typedef Ray3 Ray3dN; /// returns closest point template Point3 ClosestPoint( Ray3 r, const Point3 & p) { ScalarType t = r.Projection(p); if (t<0) return r.Origin(); return r.P(t); } /*@}*/ } // end namespace #endif