/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** ****************************************************************************/ #ifndef VCGLIB_UPDATE_CURVATURE_FITTING #define VCGLIB_UPDATE_CURVATURE_FITTING #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace vcg { namespace tri { /// \ingroup trimesh /// \headerfile curvature_fitting.h vcg/complex/algorithms/update/curvature_fitting.h /// \brief Computation of per-vertex directions and values of curvature. /** This class is used to compute the per-vertex directions and values of curvature using a quadric fitting method. */ template class UpdateCurvatureFitting { public: typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::VertContainer VertContainer; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexPointer VertexTypeP; typedef vcg::face::VFIterator VFIteratorType; typedef typename MeshType::CoordType CoordType; typedef typename CoordType::ScalarType ScalarType; class Quadric { public: Quadric(double av, double bv, double cv, double dv, double ev) { a() = av; b() = bv; c() = cv; d() = dv; e() = ev; } double& a() { return data[0];} double& b() { return data[1];} double& c() { return data[2];} double& d() { return data[3];} double& e() { return data[4];} double data[5]; double evaluate(double u, double v) { return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v; } double du(double u, double v) { return 2.0*a()*u + b()*v + d(); } double dv(double u, double v) { return 2.0*c()*v + b()*u + e(); } double duv(double /*u*/, double /*v*/) { return b(); } double duu(double /*u*/, double /*v*/) { return 2.0*a(); } double dvv(double /*u*/, double /*v*/) { return 2.0*c(); } static Quadric fit(std::vector VV) { assert(VV.size() >= 5); Eigen::MatrixXf A(VV.size(),5); Eigen::MatrixXf b(VV.size(),1); Eigen::MatrixXf sol(VV.size(),1); for(unsigned int c=0; c < VV.size(); ++c) { double u = VV[c].X(); double v = VV[c].Y(); double n = VV[c].Z(); A(c,0) = u*u; A(c,1) = u*v; A(c,2) = v*v; A(c,3) = u; A(c,4) = v; b(c,0) = n; } sol = ((A.transpose()*A).inverse()*A.transpose())*b; return Quadric(sol(0,0),sol(1,0),sol(2,0),sol(3,0),sol(4,0)); } }; static CoordType project(VertexType* v, VertexType* vp) { return vp->P() - (v->N() * ((vp->P() - v->P()) * v->N())); } static std::vector computeReferenceFrames(VertexTypeP vi) { vcg::face::VFIterator vfi(vi); int i = (vfi.I()+1)%3; VertexTypeP vp = vfi.F()->V(i); CoordType x = (project(&*vi,vp) - vi->P()).Normalize(); //assert(fabs(x * vi->N()) < 0.1); std::vector res(3); res[0] = x; res[1] = (vi->N() ^ res[0]).Normalize(); res[2] = (vi->N())/(vi->N()).Norm(); return res; } static std::set getSecondRing(VertexTypeP v) { std::set ris; std::set coords; vcg::face::VFIterator vvi(v); for(;!vvi.End();++vvi) { vcg::face::VFIterator vvi2(vvi.F()->V((vvi.I()+1)%3)); for(;!vvi2.End();++vvi2) { ris.insert(vvi2.F()->V((vvi2.I()+1)%3)); } } typename std::set::iterator it; for(it = ris.begin(); it != ris.end(); ++it) coords.insert((*it)->P()); return coords; } static Quadric fitQuadric(VertexTypeP v, std::vector& ref) { std::set ring = getSecondRing(v); if (ring.size() < 5) return Quadric(1,1,1,1,1); std::vector points; typename std::set::iterator b = ring.begin(); typename std::set::iterator e = ring.end(); while(b != e) { // vtang non e` il v tangente!!! CoordType vTang = *b - v->P(); double x = vTang * ref[0]; double y = vTang * ref[1]; double z = vTang * ref[2]; points.push_back(CoordType(x,y,z)); ++b; } return Quadric::fit(points); } static void computeCurvature(MeshType & m) { Allocator::CompactVertexVector(m); tri::RequireCompactness(m); tri::RequireVFAdjacency(m); vcg::tri::UpdateTopology::VertexFace(m); vcg::tri::UpdateNormal::PerVertexAngleWeighted(m); vcg::tri::UpdateNormal::NormalizePerVertex(m); VertexIterator vi; for(vi = m.vert.begin(); vi!=m.vert.end(); ++vi ) { std::vector ref = computeReferenceFrames(&*vi); Quadric q = fitQuadric(&*vi,ref); double a = q.a(); double b = q.b(); double c = q.c(); double d = q.d(); double e = q.e(); double E = 1.0 + d*d; double F = d*e; double G = 1.0 + e*e; CoordType n = CoordType(-d,-e,1.0).Normalize(); vi->N() = ref[0] * n[0] + ref[1] * n[1] + ref[2] * n[2]; double L = 2.0 * a * n.Z(); double M = b * n.Z(); double N = 2 * c * n.Z(); // ----------------- Eigen stuff Eigen::Matrix2d m; m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F; m = m / (E*G-F*F); Eigen::SelfAdjointEigenSolver eig(m); Eigen::Vector2d c_val = eig.eigenvalues(); Eigen::Matrix2d c_vec = eig.eigenvectors(); c_val = -c_val; CoordType v1, v2; v1[0] = c_vec(0,0); v1[1] = c_vec(0,1); v1[2] = 0; v2[0] = c_vec(1,0); v2[1] = c_vec(1,1); v2[2] = 0; v1 = v1.Normalize(); v2 = v2.Normalize(); v1 = v1 * c_val[0]; v2 = v2 * c_val[1]; CoordType v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2]; CoordType v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2]; v1global.Normalize(); v2global.Normalize(); if (c_val[0] > c_val[1]) { (*vi).PD1().Import(v1global); (*vi).PD2().Import(v2global); (*vi).K1() = c_val[0]; (*vi).K2() = c_val[1]; } else { (*vi).PD1().Import(v2global); (*vi).PD2().Import(v1global); (*vi).K1() = c_val[1]; (*vi).K2() = c_val[0]; } // ---- end Eigen stuff } } // GG LOCAL CURVATURE class QuadricLocal { public: QuadricLocal () { a() = b() = c() = d() = e() = 1.0; } QuadricLocal (double av, double bv, double cv, double dv, double ev) { a() = av; b() = bv; c() = cv; d() = dv; e() = ev; } double& a() { return data[0];} double& b() { return data[1];} double& c() { return data[2];} double& d() { return data[3];} double& e() { return data[4];} double data[5]; double evaluate(double u, double v) { return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v; } double du(double u, double v) { return 2.0*a()*u + b()*v + d(); } double dv(double u, double v) { return 2.0*c()*v + b()*u + e(); } double duv(double /*u*/, double /*v*/) { return b(); } double duu(double /*u*/, double /*v*/) { return 2.0*a(); } double dvv(double /*u*/, double /*v*/) { return 2.0*c(); } static QuadricLocal fit(std::vector &VV, bool svdRes, bool detCheck) { assert(VV.size() >= 5); Eigen::MatrixXd A(VV.size(),5); Eigen::MatrixXd b(VV.size(),1); Eigen::MatrixXd sol(5,1); for(unsigned int c=0; c < VV.size(); ++c) { double u = VV[c].X(); double v = VV[c].Y(); double n = VV[c].Z(); A(c,0) = u*u; A(c,1) = u*v; A(c,2) = v*v; A(c,3) = u; A(c,4) = v; b[c] = n; } static int count = 0, index = 0; double min = 0.000000000001; //1.0e-12 /* if (!count) printf("GNE %e\n", min); */ if (detCheck && ((A.transpose()*A).determinant() < min && (A.transpose()*A).determinant() > -min)) { //A.svd().solve(b, &sol); A.svd().solve(b, &sol); //cout << sol << endl; printf("Quadric: unsolvable vertex %d %d\n", count, ++index); //return Quadric (1, 1, 1, 1, 1); // A.svd().solve(b, &sol); Eigen::JacobiSVD svd(A); sol=svd.solve(b); return QuadricLocal(sol[0],sol[1],sol[2],sol[3],sol[4]); } count++; //for (int i = 0; i < 100; i++) { if (svdRes) { Eigen::JacobiSVD svd(A); sol=svd.solve(b); //A.svd().solve(b, &sol); } else sol = ((A.transpose()*A).inverse()*A.transpose())*b; } return QuadricLocal(sol[0],sol[1],sol[2],sol[3],sol[4]); } }; static void expandMaxLocal (MeshType & mesh, VertexType *v, int max, std::vector *vv) { Nring rw = Nring (v, &mesh); do rw.expand (); while (rw.allV.size() < max+1); if (rw.allV[0] != v) printf ("rw.allV[0] != *v\n"); vv->reserve ((size_t)max); for (int i = 1; i < max+1; i++) vv->push_back(rw.allV[i]); rw.clear(); } static void expandSphereLocal (MeshType & mesh, VertexType *v, float r, int min, std::vector *vv) { Nring rw = Nring (v, &mesh); bool isInside = true; while (isInside) { rw.expand(); vv->reserve(rw.allV.size()); typename std::vector::iterator b = rw.lastV.begin(); typename std::vector::iterator e = rw.lastV.end(); isInside = false; while(b != e) { if (((*b)->P() - v->P()).Norm() < r) { vv->push_back(*b);; isInside = true; } ++b; } } //printf ("%d\n", vv->size()); rw.clear(); if (vv->size() < min) { vv->clear(); expandMaxLocal (mesh, v, min, vv); } } static void getAverageNormal (VertexType *vp, std::vector &vv, CoordType *ppn) { *ppn = CoordType (0,0,0); for (typename std::vector::iterator vpi = vv.begin(); vpi != vv.end(); ++vpi) *ppn += (*vpi)->N(); *ppn += (*vp).N(); *ppn /= vv.size() + 1; ppn->Normalize(); } static void applyProjOnPlane (CoordType ppn, std::vector &vin, std::vector *vout) { for (typename std::vector::iterator vpi = vin.begin(); vpi != vin.end(); ++vpi) if ((*vpi)->N() * ppn > 0.0f) vout->push_back (*vpi); } static CoordType projectLocal(VertexType* v, VertexType* vp, CoordType ppn) { return vp->P() - (ppn * ((vp->P() - v->P()) * ppn)); } static void computeReferenceFramesLocal (VertexType *v, CoordType ppn, std::vector *ref) { vcg::face::VFIterator vfi (v); int i = (vfi.I() + 1) % 3; VertexTypeP vp = vfi.F()->V(i); CoordType x = (projectLocal (v, vp, ppn) - v->P()).Normalize(); assert(fabs(x * ppn) < 0.1); *ref = std::vector(3); (*ref)[0] = x; (*ref)[1] = (ppn ^ (*ref)[0]).Normalize(); (*ref)[2] = ppn.Normalize(); //ppn / ppn.Norm(); } static void fitQuadricLocal (VertexType *v, std::vector ref, std::vector &vv, QuadricLocal *q) { bool svdResolution = false; bool zeroDeterminantCheck = false; std::vector points; points.reserve (vv.size()); typename std::vector::iterator b = vv.begin(); typename std::vector::iterator e = vv.end(); while(b != e) { CoordType cp = (*b)->P(); // vtang non e` il v tangente!!! CoordType vTang = cp - v->P(); double x = vTang * ref[0]; double y = vTang * ref[1]; double z = vTang * ref[2]; points.push_back(CoordType(x,y,z)); ++b; } *q = QuadricLocal::fit (points, svdResolution, zeroDeterminantCheck); } static void finalEigenStuff (VertexType *v, std::vector ref, QuadricLocal q) { double a = q.a(); double b = q.b(); double c = q.c(); double d = q.d(); double e = q.e(); double E = 1.0 + d*d; double F = d*e; double G = 1.0 + e*e; CoordType n = CoordType(-d,-e,1.0).Normalize(); v->N() = ref[0] * n[0] + ref[1] * n[1] + ref[2] * n[2]; double L = 2.0 * a * n.Z(); double M = b * n.Z(); double N = 2 * c * n.Z(); // ----------------- Eigen stuff Eigen::Matrix2d m; m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F; m = m / (E*G-F*F); Eigen::SelfAdjointEigenSolver eig(m); Eigen::Vector2d c_val = eig.eigenvalues(); Eigen::Matrix2d c_vec = eig.eigenvectors(); c_val = -c_val; CoordType v1, v2; v1[0] = c_vec[0]; v1[1] = c_vec[1]; v1[2] = d * v1[0] + e * v1[1]; v2[0] = c_vec[2]; v2[1] = c_vec[3]; v2[2] = d * v2[0] + e * v2[1]; v1 = v1.Normalize(); v2 = v2.Normalize(); CoordType v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2]; CoordType v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2]; v1global.Normalize(); v2global.Normalize(); v1global *= c_val[0]; v2global *= c_val[1]; if (c_val[0] > c_val[1]) { (*v).PD1() = v1global; (*v).PD2() = v2global; (*v).K1() = c_val[0]; (*v).K2() = c_val[1]; } else { (*v).PD1() = v2global; (*v).PD2() = v1global; (*v).K1() = c_val[1]; (*v).K2() = c_val[0]; } // ---- end Eigen stuff } static void updateCurvatureLocal (MeshType & mesh, float radiusSphere) { bool verbose = false; bool projectionPlaneCheck = true; int vertexesPerFit = 0; int i = 0; VertexIterator vi; for(vi = mesh.vert.begin(); vi != mesh.vert.end(); ++vi, i++) { std::vector vv; std::vector vvtmp; int count; if (verbose && !((count = (vi - mesh.vert.begin())) % 1000)) printf ("vertex %d of %d\n",count,mesh.vert.size()); // if (kRing != 0) // expandRing (&*vi, kRing, 5, &vv); // else expandSphereLocal (mesh, &*vi, radiusSphere, 5, &vv); assert (vv.size() >= 5); CoordType ppn; // if (averageNormalMode) // //ppn = (*vi).N(); getAverageNormal (&*vi, vv, &ppn); // else // getProjPlaneNormal (&*vi, vv, &ppn); if (projectionPlaneCheck) { vvtmp.reserve (vv.size ()); applyProjOnPlane (ppn, vv, &vvtmp); if (vvtmp.size() >= 5) vv = vvtmp; } vvtmp.clear(); // if (montecarloMaxVertexNum) // { // //printf ("P: %d\n", vv.size()); // vvtmp.reserve (vv.size ()); // //printf ("TP: %d\n", vvtmp.size()); // applyMontecarlo (montecarloMaxVertexNum, vv, &vvtmp); // //printf ("TD: %d\n", vvtmp.size()); // vv = vvtmp; // //printf ("D: %d\n", vv.size()); // //printf ("\n"); // } assert (vv.size() >= 5); std::vector ref; computeReferenceFramesLocal (&*vi, ppn, &ref); /* printf ("%lf %lf %lf - %lf %lf %lf - %lf %lf %lf\n", ref[0][0], ref[0][1], ref[0][2], ref[1][0], ref[1][1], ref[1][2], ref[2][0], ref[2][1], ref[2][2]); */ vertexesPerFit += vv.size(); //printf ("size: %d\n", vv.size()); QuadricLocal q; fitQuadricLocal (&*vi, ref, vv, &q); finalEigenStuff (&*vi, ref, q); } //if (verbose) //printf ("average vertex num in each fit: %f, total %d, vn %d\n", ((float) vertexesPerFit) / mesh.vn, vertexesPerFit, mesh.vn); if (verbose) printf ("average vertex num in each fit: %f\n", ((float) vertexesPerFit) / mesh.vn); } }; } } #endif