/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef _VCG_EDGE_TOPOLOGY #define _VCG_EDGE_TOPOLOGY #include #include #include namespace vcg { namespace edge { /** \addtogroup edge */ /*@{*/template inline bool IsEdgeManifoldFF( EdgeType const & e, const int j ) { assert(e.cFFp(j) != 0); // never try to use this on uncomputed topology if(EdgeType::HasFFAdjacency()) return ( e.cFFp(j) == &e || &e == e.cFFp(j)->cFFp(e.cFFi(j)) ); else return true; } /** Return a boolean that indicate if the j-th edge of the face is a border. @param j Index of the edge @return true if j is an edge of border, false otherwise */ template inline bool IsEdgeBorder(EdgeType const & e, const int j ) { if(EdgeType::HasEEAdjacency()) return e.cEEp(j)==&e; assert(0); return true; } template void VVStarVE(const VertexType* vp, std::vector &starVec) { starVec.clear(); edge::VEIterator vei(vp); while(!vei.End()) { starVec.push_back(vei.V1()); ++vei; } } template void VEStarVE(const typename EdgeType::VertexType* vp, std::vector &starVec) { starVec.clear(); edge::VEIterator vei(vp); while(!vei.End()) { starVec.push_back(vei.E()); ++vei; } } /// Completely detach an edge from the VE adjacency. Useful before deleting it template void VEDetach(EdgeType & e) { VEDetach(e,0); VEDetach(e,1); } /// It detaches the given edge e from the VE adjacency on the vertex z /// It is used for careful hand stictching of topologies. template void VEDetach(EdgeType & e, int z) { typename EdgeType::VertexType *vz = e.V(z); // the vertex from which the edge must be detached. if(vz->VEp()==&e ) //if it is the first edge in the VE chain it detaches it from the begin { assert(vz->VEi() == z); vz->VEp() = e.VEp(z); vz->VEi() = e.VEi(z); return; } else // scan the list of edges to find the current edge e to be detached { for( VEIterator vei(vz);!vei.End();++vei) { if(vei.E()->VEp(vei.I()) == &e) { vei.e->VEp(vei.z) = e.VEp(z); vei.e->VEi(vei.z) = e.VEi(z); return; } } assert(0); } } /// Append an edge in the VE list of vertex e->V(z) template void VEAppend(EdgeType* e, int z) { typename EdgeType::VertexType *v = e->V(z); if (v->VEp()!=0) { EdgeType *e0=v->VEp(); int z0=v->VEi(); //append e->VEp(z)=e0; e->VEi(z)=z0; } else { e->VEp(z)=0; e->VEi(z)=-1; } v->VEp()=e; v->VEi()=z; } /*! Perform a simple edge collapse using VE adjacency * * It collapses the two edges incidnent on the indicated vertex so that the passed edge survives, * the indicated vertex is deleted, and the edge ajacent to e0 along z is deleted too. * It assumes that the edge mesh is 1-Manifold. * If the indicated vertex is boundary or non manifold the function do nothing. * * v0 vd v1 * ---O-------O-------O--- * z0 e0 z e1 z1 * * v0 v1 * ---O---------------O--- * e0 * * */ template void VEEdgeCollapse(MeshType &poly, typename MeshType::EdgeType *e0, const int z) { typedef typename MeshType::EdgeType EdgeType; typedef typename MeshType::VertexType VertexType; VertexType *vd = e0->V(z); std::vector starVecEp; edge::VEStarVE(vd,starVecEp); if(starVecEp.size()!=2) return; EdgeType *e1=0; // this edge will be deleted if( starVecEp[0] == e0 ) e1 = starVecEp[1]; if( starVecEp[1] == e0 ) e1 = starVecEp[0]; assert(e1 && (e1!=e0) ); //int z0 = (z+1)%2; int z1 = -1; if(e1->V(0) == vd) z1=1; if(e1->V(1) == vd) z1=0; assert(z1!=-1); VertexType *v1 = e1->V(z1); assert(v1 != vd); edge::VEDetach(*e1); // detach the edge to be deleted. edge::VEDetach(*e0,z); // detach one side of the surviving edge e0->V(z) = v1; // change one extreme of the edge edge::VEAppend(e0, z); // attach it again. tri::Allocator::DeleteEdge(poly,*e1); tri::Allocator::DeleteVertex(poly,*vd); } template void VEEdgeCollapse(MeshType &poly, typename MeshType::VertexType *v) { VEEdgeCollapse(poly,v->VEp(),v->VEi()); } /*! Perform a simple edge split using VE adjacency * */ template void VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, typename MeshType::VertexType &v) { typename MeshType::VertexPointer v1 = e->V(1); edge::VEDetach(*e,1); e->V(1) = &v; edge::VEAppend(e,1); // tri::Allocator:: template PointerUpdater pu; typename MeshType::EdgeIterator ei = tri::Allocator::AddEdges(poly, 1); ei->V(0)=&v; ei->V(1)=v1; edge::VEAppend(&*ei,0); edge::VEAppend(&*ei,1); } template typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p) { typename MeshType::VertexIterator vi = tri::Allocator::AddVertex(poly,p); VEEdgeSplit(poly,e,*vi); return &*vi; } template typename MeshType::VertexPointer VEEdgeSplit(MeshType &poly, typename MeshType::EdgeType *e, const typename MeshType::CoordType &p, const typename MeshType::CoordType &n) { typename MeshType::VertexIterator vi = tri::Allocator::AddVertex(poly,p,n); VEEdgeSplit(poly,e,*vi); return &*vi; } /*! Returns the number of incident edges over a vertex vp; Using the VE adjacency. * * It just follows the chain of incident edges of the VE adjacency. */ template int VEDegree(const typename EdgeType::VertexType* vp) { int cnt=0; edge::VEIterator vei(vp); while(!vei.End()) { ++cnt; ++vei; } return cnt; } } // end namespace edge } // end namespace vcg #endif