/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef _VCG_FACE_TOPOLOGY #define _VCG_FACE_TOPOLOGY #include #include namespace vcg { namespace face { /** \addtogroup face */ /*@{*/ /** Return a boolean that indicate if the face is complex. @param j Index of the edge @return true se la faccia e' manifold, false altrimenti */ template inline bool IsManifold( FaceType const & f, const int j ) { assert(f.cFFp(j) != 0); // never try to use this on uncomputed topology if(FaceType::HasFFAdjacency()) return ( f.cFFp(j) == &f || &f == f.cFFp(j)->cFFp(f.cFFi(j)) ); else return true; } /** Return a boolean that indicate if the j-th edge of the face is a border. @param j Index of the edge @return true if j is an edge of border, false otherwise */ template inline bool IsBorder(FaceType const & f, const int j ) { if(FaceType::HasFFAdjacency()) return f.cFFp(j)==&f; //return f.IsBorder(j); assert(0); return true; } /*! \brief Compute the signed dihedral angle between the normals of two adjacent faces * * The angle between the normal is signed according to the concavity/convexity of the * dihedral angle: negative if the edge shared between the two faces is concave, positive otherwise. * The surface it is assumend to be oriented. * It simply use the projection of the opposite vertex onto the plane of the other one. * It does not assume anything on face normals. * * v0 ___________ vf1 * |\ | * | \i1 f1 | * | \ | * |f0 i0\ | * | \ | * |__________\| * vf0 v1 */ template inline typename FaceType::ScalarType DihedralAngleRad(FaceType & f, const int i ) { typedef typename FaceType::ScalarType ScalarType; typedef typename FaceType::CoordType CoordType; typedef typename FaceType::VertexType VertexType; FaceType *f0 = &f; FaceType *f1 = f.FFp(i); int i0=i; int i1=f.FFi(i); VertexType *vf0 = f0->V2(i0); VertexType *vf1 = f1->V2(i1); CoordType n0 = TriangleNormal(*f0).Normalize(); CoordType n1 = TriangleNormal(*f1).Normalize(); ScalarType off0 = n0*vf0->P(); ScalarType off1 = n1*vf1->P(); ScalarType dist01 = off0 - n0*vf1->P(); ScalarType dist10 = off1 - n1*vf0->P(); // just to be sure use the sign of the largest in absolute value; ScalarType sign; if(fabs(dist01) > fabs(dist10)) sign = dist01; else sign=dist10; ScalarType angleRad=AngleN(n0,n1); if(sign > 0 ) return angleRad; else return -angleRad; } /// Count border edges of the face template inline int BorderCount(FaceType const & f) { if(FaceType::HasFFAdjacency()) { int t = 0; if( IsBorder(f,0) ) ++t; if( IsBorder(f,1) ) ++t; if( IsBorder(f,2) ) ++t; return t; } else return 3; } /// Counts the number of incident faces in a complex edge template inline int ComplexSize(FaceType & f, const int e) { if(FaceType::HasFFAdjacency()) { if(face::IsBorder(f,e)) return 1; if(face::IsManifold(f,e)) return 2; // Non manifold case Pos< FaceType > fpos(&f,e); int cnt=0; do { fpos.NextF(); assert(!fpos.IsBorder()); assert(!fpos.IsManifold()); ++cnt; } while(fpos.f!=&f); assert (cnt>2); return cnt; } assert(0); return 2; } /** This function check the FF topology correctness for an edge of a face. It's possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't defined. @param f the face to be checked @param e Index of the edge to be checked */ template bool FFCorrectness(FaceType & f, const int e) { if(f.FFp(e)==0) return false; // Not computed or inconsistent topology if(f.FFp(e)==&f) // Border { if(f.FFi(e)==e) return true; else return false; } if(f.FFp(e)->FFp(f.FFi(e))==&f) // plain two manifold { if(f.FFp(e)->FFi(f.FFi(e))==e) return true; else return false; } // Non Manifold Case // all the faces must be connected in a loop. Pos< FaceType > curFace(&f,e); // Build the half edge int cnt=0; do { if(curFace.IsManifold()) return false; if(curFace.IsBorder()) return false; curFace.NextF(); cnt++; assert(cnt<100); } while ( curFace.f != &f); return true; } /** This function detach the face from the adjacent face via the edge e. It's possible to use this function it ONLY in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't defined. @param f the face to be detached @param e Index of the edge to be detached \note it updates border flag and faux flags (the detached edge has it border bit flagged and faux bit cleared) */ template void FFDetachManifold(FaceType & f, const int e) { assert(FFCorrectness(f,e)); assert(!IsBorder(f,e)); // Never try to detach a border edge! FaceType *ffp = f.FFp(e); //int ffi=f.FFp(e); int ffi=f.FFi(e); f.FFp(e)=&f; f.FFi(e)=e; ffp->FFp(ffi)=ffp; ffp->FFi(ffi)=ffi; f.SetB(e); f.ClearF(e); ffp->SetB(ffi); ffp->ClearF(ffi); assert(FFCorrectness(f,e)); assert(FFCorrectness(*ffp,ffi)); } /** This function detach the face from the adjacent face via the edge e. It's possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't defined. @param f the face to be detached @param e Index of the edge to be detached */ template void FFDetach(FaceType & f, const int e) { assert(FFCorrectness(f,e)); assert(!IsBorder(f,e)); // Never try to detach a border edge! int complexity=ComplexSize(f,e); (void) complexity; assert(complexity>0); Pos< FaceType > FirstFace(&f,e); // Build the half edge Pos< FaceType > LastFace(&f,e); // Build the half edge FirstFace.NextF(); LastFace.NextF(); int cnt=0; // then in case of non manifold face continue to advance LastFace // until I find it become the one that // preceed the face I want to erase while ( LastFace.f->FFp(LastFace.z) != &f) { assert(ComplexSize(*LastFace.f,LastFace.z)==complexity); assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge assert(!LastFace.IsBorder()); LastFace.NextF(); cnt++; assert(cnt<100); } assert(LastFace.f->FFp(LastFace.z)==&f); assert(f.FFp(e)== FirstFace.f); // Now we link the last one to the first one, skipping the face to be detached; LastFace.f->FFp(LastFace.z) = FirstFace.f; LastFace.f->FFi(LastFace.z) = FirstFace.z; assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1); // At the end selfconnect the chosen edge to make a border. f.FFp(e) = &f; f.FFi(e) = e; assert(ComplexSize(f,e)==1); assert(FFCorrectness(*LastFace.f,LastFace.z)); assert(FFCorrectness(f,e)); } /** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't define. @param z1 Index of the edge @param f2 Pointer to the face @param z2 The edge of the face f2 */ template void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2) { //typedef FEdgePosB< FACE_TYPE > ETYPE; Pos< FaceType > EPB(f2,z2); Pos< FaceType > TEPB; TEPB = EPB; EPB.NextF(); while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2 { TEPB = EPB; EPB.NextF(); } //Salvo i dati di f1 prima di sovrascrivere FaceType *f1prec = f->FFp(z1); int z1prec = f->FFi(z1); //Aggiorno f1 f->FFp(z1) = TEPB.f->FFp(TEPB.z); f->FFi(z1) = TEPB.f->FFi(TEPB.z); //Aggiorno la faccia che precede f2 TEPB.f->FFp(TEPB.z) = f1prec; TEPB.f->FFi(TEPB.z) = z1prec; } /** This function attach the face (via the edge z1) to another face (via the edge z2). It is not possible to use it also in non-two manifold situation. The function cannot be applicated if the adjacencies among faces aren't define. @param z1 Index of the edge @param f2 Pointer to the face @param z2 The edge of the face f2 */ template void FFAttachManifold(FaceType * &f1, int z1, FaceType *&f2, int z2) { assert(IsBorder(*f1,z1)); assert(IsBorder(*f2,z2)); assert(f1->V0(z1) == f2->V0(z2) || f1->V0(z1) == f2->V1(z2)); assert(f1->V1(z1) == f2->V0(z2) || f1->V1(z1) == f2->V1(z2)); f1->FFp(z1) = f2; f1->FFi(z1) = z2; f2->FFp(z2) = f1; f2->FFi(z2) = z1; } // This one should be called only on uniitialized faces. template void FFSetBorder(FaceType * &f1, int z1) { assert(f1->FFp(z1)==0 || IsBorder(*f1,z1)); f1->FFp(z1)=f1; f1->FFi(z1)=z1; } template void AssertAdj(FaceType & f) { (void)f; assert(f.FFp(0)->FFp(f.FFi(0))==&f); assert(f.FFp(1)->FFp(f.FFi(1))==&f); assert(f.FFp(2)->FFp(f.FFi(2))==&f); assert(f.FFp(0)->FFi(f.FFi(0))==0); assert(f.FFp(1)->FFi(f.FFi(1))==1); assert(f.FFp(2)->FFi(f.FFi(2))==2); } /** * Check if the given face is oriented as the one adjacent to the specified edge. * @param f Face to check the orientation * @param z Index of the edge */ template bool CheckOrientation(FaceType &f, int z) { if (IsBorder(f, z)) return true; else { FaceType *g = f.FFp(z); int gi = f.FFi(z); if (f.V0(z) == g->V1(gi)) return true; else return false; } } /** * This function change the orientation of the face by inverting the index of two vertex. * @param z Index of the edge */ template void SwapEdge(FaceType &f, const int z) { SwapEdge(f,z); } template void SwapEdge(FaceType &f, const int z) { // swap V0(z) with V1(z) std::swap(f.V0(z), f.V1(z)); // Managemnt of faux edge information (edge z is not affected) bool Faux1 = f.IsF((z+1)%3); bool Faux2 = f.IsF((z+2)%3); if(Faux1) f.SetF((z+2)%3); else f.ClearF((z+2)%3); if(Faux2) f.SetF((z+1)%3); else f.ClearF((z+1)%3); if(f.HasFFAdjacency() && UpdateTopology) { // store information to preserve topology int z1 = (z+1)%3; int z2 = (z+2)%3; FaceType *g1p = f.FFp(z1); FaceType *g2p = f.FFp(z2); int g1i = f.FFi(z1); int g2i = f.FFi(z2); // g0 face topology is not affected by the swap if (g1p != &f) { g1p->FFi(g1i) = z2; f.FFi(z2) = g1i; } else { f.FFi(z2) = z2; } if (g2p != &f) { g2p->FFi(g2i) = z1; f.FFi(z1) = g2i; } else { f.FFi(z1) = z1; } // finalize swap f.FFp(z1) = g2p; f.FFp(z2) = g1p; } } /*! Perform a simple edge collapse * Basic link conditions * */ template bool FFLinkCondition(FaceType &f, const int z) { typedef typename FaceType::VertexType VertexType; typedef typename vcg::face::Pos< FaceType > PosType; VertexType *v0=f.V0(z); VertexType *v1=f.V1(z); PosType p0(&f,v0); PosType p1(&f,v1); std::vectorv0Vec; std::vectorv1Vec; VVOrderedStarFF(p0,v0Vec); VVOrderedStarFF(p1,v1Vec); std::set v0set; v0set.insert(v0Vec.begin(),v0Vec.end()); assert(v0set.size() == v0Vec.size()); int cnt =0; for(size_t i=0;i void FFEdgeCollapse(MeshType &m, typename MeshType::FaceType &f, const int z) { typedef typename MeshType::FaceType FaceType; typedef typename MeshType::VertexType VertexType; typedef typename vcg::face::Pos< FaceType > PosType; FaceType *f0 = &f; int z0=z; FaceType *f1 = f.FFp(z); int z1=f.FFi(z); VertexType *delV=f.V0(z); VertexType *surV=f.V1(z); // Collect faces that have to be updated PosType delPos(f0,delV); std::vector faceToBeChanged; VFOrderedStarFF(delPos,faceToBeChanged); // Topology Stitching FaceType *f01= 0,*f02= 0,*f11= 0,*f12= 0; int i01=-1, i02=-1, i11=-1, i12=-1; // Note that the faux bit is preserved only if both of the edges to be stiched are faux. bool f0Faux = f0->IsF((z0+1)%3) && f0->IsF((z0+2)%3); bool f1Faux = f1->IsF((z1+1)%3) && f1->IsF((z1+2)%3); if(!face::IsBorder(*f0,(z0+1)%3)) { f01 = f0->FFp((z0+1)%3); i01=f0->FFi((z0+1)%3); FFDetachManifold(*f0,(z0+1)%3);} if(!face::IsBorder(*f0,(z0+2)%3)) { f02 = f0->FFp((z0+2)%3); i02=f0->FFi((z0+2)%3); FFDetachManifold(*f0,(z0+2)%3);} if(!face::IsBorder(*f1,(z1+1)%3)) { f11 = f1->FFp((z1+1)%3); i11=f1->FFi((z1+1)%3); FFDetachManifold(*f1,(z1+1)%3);} if(!face::IsBorder(*f1,(z1+2)%3)) { f12 = f1->FFp((z1+2)%3); i12=f1->FFi((z1+2)%3); FFDetachManifold(*f1,(z1+2)%3);} // Final Pass to update the vertex ptrs in all the involved faces for(size_t i=0;iV(faceToBeChanged[i].VInd()) =surV; } if(f01 && f02) { FFAttachManifold(f01,i01,f02,i02); if(f0Faux) {f01->SetF(i01); f02->SetF(i02);} } if(f11 && f12) { FFAttachManifold(f11,i11,f12,i12); if(f1Faux) {f11->SetF(i11); f12->SetF(i12);} } tri::Allocator::DeleteFace(m,*f0); if(f1!=f0) tri::Allocator::DeleteFace(m,*f1); tri::Allocator::DeleteVertex(m,*delV); } /*! * Perform a Geometric Check about the normals of a edge flip. * return trues if after the flip the normals does not change more than the given threshold angle; * it assumes that the flip is topologically correct. * * \param f the face * \param z the edge index * \param angleRad the threshold angle * * oldD1 ___________ newD1 * |\ | * | \ | * | \ | * | f z\ | * | \ | * |__________\| * newD0 oldD0 */ template bool CheckFlipEdgeNormal(FaceType &f, const int z, const float angleRad) { typedef typename FaceType::VertexType VertexType; typedef typename VertexType::CoordType CoordType; VertexType *OldDiag0 = f.V0(z); VertexType *OldDiag1 = f.V1(z); VertexType *NewDiag0 = f.V2(z); VertexType *NewDiag1 = f.FFp(z)->V2(f.FFi(z)); assert((NewDiag1 != NewDiag0) && (NewDiag1 != OldDiag0) && (NewDiag1 != OldDiag1)); CoordType oldN0 = NormalizedNormal( NewDiag0->cP(),OldDiag0->cP(),OldDiag1->cP()); CoordType oldN1 = NormalizedNormal( NewDiag1->cP(),OldDiag1->cP(),OldDiag0->cP()); CoordType newN0 = NormalizedNormal( OldDiag0->cP(),NewDiag1->cP(),NewDiag0->cP()); CoordType newN1 = NormalizedNormal( OldDiag1->cP(),NewDiag0->cP(),NewDiag1->cP()); if(AngleN(oldN0,newN0) > angleRad) return false; if(AngleN(oldN0,newN1) > angleRad) return false; if(AngleN(oldN1,newN0) > angleRad) return false; if(AngleN(oldN1,newN1) > angleRad) return false; return true; } /*! * Perform a Topological check to see if the z-th edge of the face f can be flipped. * No Geometric test are done. (see CheckFlipEdgeNormal) * \param f pointer to the face * \param z the edge index */ template bool CheckFlipEdge(FaceType &f, int z) { typedef typename FaceType::VertexType VertexType; typedef typename vcg::face::Pos< FaceType > PosType; if (z<0 || z>2) return false; // boundary edges cannot be flipped if (face::IsBorder(f, z)) return false; FaceType *g = f.FFp(z); int w = f.FFi(z); // check if the vertices of the edge are the same // e.g. the mesh has to be well oriented if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) ) return false; // check if the flipped edge is already present in the mesh // f_v2 and g_v2 are the vertices of the new edge VertexType *f_v2 = f.V2(z); VertexType *g_v2 = g->V2(w); // just a sanity check. If this happens the mesh is not manifold. if (f_v2 == g_v2) return false; // Now walk around f_v2, one of the two vertexes of the new edge // and check that it does not already exists. PosType pos(&f, (z+2)%3, f_v2); PosType startPos=pos; do { pos.NextE(); if (g_v2 == pos.VFlip()) return false; } while (pos != startPos); return true; } /*! * Flip the z-th edge of the face f. * Check for topological correctness first using CheckFlipFace(). * \param f pointer to the face * \param z the edge index * * Note: For edge flip we intend the swap of the diagonal of the rectangle * formed by the face \a f and the face adjacent to the specified edge. */ template void FlipEdge(FaceType &f, const int z) { assert(z>=0); assert(z<3); assert( !IsBorder(f,z) ); assert( face::IsManifold(f, z)); FaceType *g = f.FFp(z); int w = f.FFi(z); assert( g->V(w) == f.V1(z) ); assert( g->V1(w)== f.V(z) ); assert( g->V2(w)!= f.V(z) ); assert( g->V2(w)!= f.V1(z) ); assert( g->V2(w)!= f.V2(z) ); f.V1(z) = g->V2(w); g->V1(w) = f.V2(z); f.FFp(z) = g->FFp((w+1)%3); f.FFi(z) = g->FFi((w+1)%3); g->FFp(w) = f.FFp((z+1)%3); g->FFi(w) = f.FFi((z+1)%3); f.FFp((z+1)%3) = g; f.FFi((z+1)%3) = (w+1)%3; g->FFp((w+1)%3) = &f; g->FFi((w+1)%3) = (z+1)%3; if(f.FFp(z)==g) { f.FFp(z) = &f; f.FFi(z) = z; } else { f.FFp(z)->FFp( f.FFi(z) ) = &f; f.FFp(z)->FFi( f.FFi(z) ) = z; } if(g->FFp(w)==&f) { g->FFp(w)=g; g->FFi(w)=w; } else { g->FFp(w)->FFp( g->FFi(w) ) = g; g->FFp(w)->FFi( g->FFi(w) ) = w; } } template void VFDetach(FaceType & f) { VFDetach(f,0); VFDetach(f,1); VFDetach(f,2); } // Stacca la faccia corrente dalla catena di facce incidenti sul vertice z, // NOTA funziona SOLO per la topologia VF!!! // usata nelle classi di collapse template void VFDetach(FaceType & f, int z) { if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin { int fz = f.V(z)->VFi(); f.V(z)->VFp() = f.VFp(fz); f.V(z)->VFi() = f.VFi(fz); } else // scan the list of faces in order to finde the current face f to be detached { VFIterator x(f.V(z)->VFp(),f.V(z)->VFi()); VFIterator y; for(;;) { y = x; ++x; assert(x.f!=0); if(x.f==&f) // found! { y.f->VFp(y.z) = f.VFp(z); y.f->VFi(y.z) = f.VFi(z); break; } } } } /// Append a face in VF list of vertex f->V(z) template void VFAppend(FaceType* & f, int z) { typename FaceType::VertexType *v = f->V(z); if (v->VFp()!=0) { FaceType *f0=v->VFp(); int z0=v->VFi(); //append f->VFp(z)=f0; f->VFi(z)=z0; } v->VFp()=f; v->VFi()=z; } /*! * \brief Compute the set of vertices adjacent to a given vertex using VF adjacency * * \param vp pointer to the vertex whose star has to be computed. * \param starVec a std::vector of Vertex pointer that is filled with the adjacent vertices. * */ template void VVStarVF( typename FaceType::VertexType* vp, std::vector &starVec) { typedef typename FaceType::VertexType* VertexPointer; starVec.clear(); face::VFIterator vfi(vp); while(!vfi.End()) { starVec.push_back(vfi.F()->V1(vfi.I())); starVec.push_back(vfi.F()->V2(vfi.I())); ++vfi; } std::sort(starVec.begin(),starVec.end()); typename std::vector::iterator new_end = std::unique(starVec.begin(),starVec.end()); starVec.resize(new_end-starVec.begin()); } /*! * \brief Compute the set of vertices adjacent to a given vertex using VF adjacency. * * The set is faces is extended of a given number of step * \param vp pointer to the vertex whose star has to be computed. * \param num_step the number of step to extend the star * \param vertVec a std::vector of Ve pointer that is filled with the adjacent faces. */ template void VVExtendedStarVF(typename FaceType::VertexType* vp, const int num_step, std::vector &vertVec) { typedef typename FaceType::VertexType VertexType; ///initialize front vertVec.clear(); vcg::face::VVStarVF(vp,vertVec); ///then dilate front ///for each step for (int step=0;step toAdd; for (unsigned int i=0;i Vtemp; vcg::face::VVStarVF(vertVec[i],Vtemp); toAdd.insert(toAdd.end(),Vtemp.begin(),Vtemp.end()); } vertVec.insert(vertVec.end(),toAdd.begin(),toAdd.end()); std::sort(vertVec.begin(),vertVec.end()); typename std::vector::iterator new_end=std::unique(vertVec.begin(),vertVec.end()); int dist=distance(vertVec.begin(),new_end); vertVec.resize(dist); } } /*! * \brief Compute the set of faces adjacent to a given vertex using VF adjacency. * * \param vp pointer to the vertex whose star has to be computed. * \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. * \param indexes a std::vector of integer of the vertex as it is seen from the faces */ template void VFStarVF( typename FaceType::VertexType* vp, std::vector &faceVec, std::vector &indexes) { faceVec.clear(); indexes.clear(); face::VFIterator vfi(vp); while(!vfi.End()) { faceVec.push_back(vfi.F()); indexes.push_back(vfi.I()); ++vfi; } } /*! * \brief Compute the set of faces incident onto a given edge using FF adjacency. * * \param fp pointer to the face whose star has to be computed * \param ei the index of the edge * \param faceVec a std::vector of Face pointer that is filled with the faces incident on that edge. * \param indexes a std::vector of integer of the edge position as it is seen from the faces */ template void EFStarFF( FaceType* fp, int ei, std::vector &faceVec, std::vector &indVed) { assert(fp->FFp(ei)!=0); faceVec.clear(); indVed.clear(); FaceType* fpit=fp; int eit=ei; do { faceVec.push_back(fpit); indVed.push_back(eit); FaceType *new_fpit = fpit->FFp(eit); int new_eit = fpit->FFi(eit); fpit=new_fpit; eit=new_eit; } while(fpit != fp); } /* Compute the set of faces adjacent to a given face using FF adjacency. * The set is faces is extended of a given number of step * \param fp pointer to the face whose star has to be computed. * \param num_step the number of step to extend the star * \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. */ template static void FFExtendedStarFF(FaceType *fp, const int num_step, std::vector &faceVec) { ///initialize front faceVec.push_back(fp); ///then dilate front ///for each step for (int step=0;step toAdd; for (unsigned int i=0;iFFp(k); if (f1==f)continue; toAdd.push_back(f1); } } faceVec.insert(faceVec.end(),toAdd.begin(),toAdd.end()); std::sort(faceVec.begin(),faceVec.end()); typename std::vector::iterator new_end=std::unique(faceVec.begin(),faceVec.end()); int dist=distance(faceVec.begin(),new_end); faceVec.resize(dist); } } /*! * \brief Compute the set of faces adjacent to a given vertex using VF adjacency. * * The set is faces is extended of a given number of step * \param vp pointer to the vertex whose star has to be computed. * \param num_step the number of step to extend the star * \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. */ template void VFExtendedStarVF(typename FaceType::VertexType* vp, const int num_step, std::vector &faceVec) { ///initialize front faceVec.clear(); std::vector indexes; vcg::face::VFStarVF(vp,faceVec,indexes); ///then dilate front ///for each step for (int step=0;step toAdd; for (unsigned int i=0;iFFp(k); if (f1==f)continue; toAdd.push_back(f1); } } faceVec.insert(faceVec.end(),toAdd.begin(),toAdd.end()); std::sort(faceVec.begin(),faceVec.end()); typename std::vector::iterator new_end=std::unique(faceVec.begin(),faceVec.end()); int dist=distance(faceVec.begin(),new_end); faceVec.resize(dist); } } /*! * \brief Compute the ordered set of vertices adjacent to a given vertex using FF adiacency * * \param startPos a Pos indicating the vertex whose star has to be computed. * \param vertexVec a std::vector of VertexPtr filled vertices around the given vertex. * */ template void VVOrderedStarFF(Pos &startPos, std::vector &vertexVec) { vertexVec.clear(); std::vector > posVec; VFOrderedStarFF(startPos,posVec); for(size_t i=0;i indicating the vertex whose star has to be computed. * \param posVec a std::vector of Pos filled with Pos arranged around the passed vertex. * */ template void VFOrderedStarFF(const Pos &startPos, std::vector > &posVec) { posVec.clear(); bool foundBorder=false; size_t firstBorderInd; Pos curPos=startPos; do { assert(curPos.IsManifold()); if(curPos.IsBorder() && !foundBorder) { foundBorder=true; firstBorderInd = posVec.size(); } posVec.push_back(curPos); curPos.FlipF(); curPos.FlipE(); } while(curPos!=startPos); // if we found a border we visited each face exactly twice, // and we have to extract the border-to-border pos sequence if(foundBorder) { size_t halfSize=posVec.size()/2; assert((posVec.size()%2)==0); posVec.erase(posVec.begin()+firstBorderInd+1+halfSize, posVec.end()); posVec.erase(posVec.begin(),posVec.begin()+firstBorderInd+1); assert(posVec.size()==halfSize); } } /*! * \brief Compute the ordered set of faces adjacent to a given vertex using FF adiacency * * \param startPos a Pos indicating the vertex whose star has to be computed. * \param faceVec a std::vector of Face pointer that is filled with the adjacent faces. * \param edgeVec a std::vector of indexes filled with the indexes of the corresponding edges shared between the faces. * */ template void VFOrderedStarFF(const Pos &startPos, std::vector &faceVec, std::vector &edgeVec) { std::vector > posVec; VFOrderedStarFF(startPos,posVec); faceVec.clear(); edgeVec.clear(); for(size_t i=0;i bool ShareEdgeFF(FaceType *f0,FaceType *f1, int *i0=0, int *i1=0) { assert((!f0->IsD())&&(!f1->IsD())); for (int i=0;i<3;i++) if (f0->FFp(i)==f1) { if((i0!=0) && (i1!=0)) { *i0=i; *i1=f0->FFi(i); } return true; } return false; } /*! * Count the number of vertices shared between two faces. * \param f0,f1 the two face to be checked * ; */ template int CountSharedVertex(FaceType *f0,FaceType *f1) { int sharedCnt=0; for (int i=0;i<3;i++) for (int j=0;j<3;j++) if (f0->V(i)==f1->V(j)) { sharedCnt++; } return sharedCnt; } /*! * find the first shared vertex between two faces. * \param f0,f1 the two face to be checked * \param i,j the indexes of the shared vertex in the two faces. Meaningful only if there is one single shared vertex * ; */ template bool FindSharedVertex(FaceType *f0,FaceType *f1, int &i, int &j) { for (i=0;i<3;i++) for (j=0;j<3;j++) if (f0->V(i)==f1->V(j)) return true; i=-1;j=-1; return false; } /*! * find the first shared edge between two faces. * \param f0,f1 the two face to be checked * \param i,j the indexes of the shared edge in the two faces. Meaningful only if there is a shared edge * */ template bool FindSharedEdge(FaceType *f0,FaceType *f1, int &i, int &j) { for (i=0;i<3;i++) for (j=0;j<3;j++) if( ( f0->V0(i)==f1->V0(j) || f0->V0(i)==f1->V1(j) ) && ( f0->V1(i)==f1->V0(j) || f0->V1(i)==f1->V1(j) ) ) return true; i=-1;j=-1; return false; } /*! * find the faces that shares the two vertices * \param v0,v1 the two vertices * \param f0,f1 the two faces , counterclokwise order * */ template bool FindSharedFaces(typename FaceType::VertexType *v0, typename FaceType::VertexType *v1, FaceType *&f0, FaceType *&f1, int &e0, int &e1) { std::vector faces0; std::vector faces1; std::vector index0; std::vector index1; VFStarVF(v0,faces0,index0); VFStarVF(v1,faces1,index1); ///then find the intersection std::sort(faces0.begin(),faces0.end()); std::sort(faces1.begin(),faces1.end()); std::vector Intersection; std::set_intersection(faces0.begin(),faces0.end(),faces1.begin(),faces1.end(),std::back_inserter(Intersection)); if (Intersection.size()<2)return false; ///no pair of faces share the 2 vertices assert(Intersection.size()==2);//otherwhise non manifoldess f0=Intersection[0]; f1=Intersection[1]; FindSharedEdge(f0,f1,e0,e1); ///and finally check if the order is right if (f0->V(e0)!=v0) { std::swap(f0,f1); std::swap(e0,e1); } return true; } /*@}*/ } // end namespace } // end namespace #endif