/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.11 2005/12/12 11:15:26 ganovelli modifications to compile with gcc Revision 1.10 2005/11/29 16:20:33 pietroni added IsInside() function Revision 1.9 2004/10/13 12:45:51 cignoni Better Doxygen documentation Revision 1.8 2004/09/01 12:21:11 pietroni minor changes to comply gcc compiler (typename's ) Revision 1.7 2004/07/09 10:08:21 ganovelli ComputeVOlume moved outside the class and other minor corrections Revision 1.6 2004/06/25 18:17:03 ganovelli minor changes Revision 1.5 2004/05/13 12:51:00 turini Changed SolidAngle : table EV in table EofV Changed DiedralAngle : tables FE and FV in tables FofE and FofV Revision 1.4 2004/05/13 08:42:36 pietroni the relation between entities functions are in tetra class (don't neeed template argoument) Revision 1.3 2004/04/28 16:31:17 turini Changed : in SolidAngle(vind) : double da0=DiedralAngle(EV(vind,0)); double da1=DiedralAngle(EV(vind,1)); double da2=DiedralAngle(EV(vind,2)); in double da0=DiedralAngle(EofV(vind,0)); double da1=DiedralAngle(EofV(vind,1)); double da2=DiedralAngle(EofV(vind,2)); Changed : in DiedralAngle(edgeind) : int f1=FE(edgeind,0); int f2=FE(edgeind,1); in int f1=FofE(edgeind,0); int f2=FofE(edgeind,1); Changed : in DiedralAngle(edgeind) : Point3d p0=FV(f1,0)->P(); Point3d p1=FV(f1,1)->P(); Point3d p2=FV(f1,2)->P(); in Point3d p0=_v[FofV(f1,0)]; Point3d p1=_v[FofV(f1,1)]; Point3d p2=_v[FofV(f1,2)]; Changed : in DiedralAngle(edgeind) : p0=FV(f2,0)->P(); p1=FV(f2,1)->P(); p2=FV(f2,2)->P(); in p0=_v[FofV(f2,0)]; p1=_v[FofV(f2,1)]; p2=_v[FofV(f2,2)]; Revision 1.2 2004/04/28 11:37:15 pietroni *** empty log message *** Revision 1.1 2004/04/22 13:19:12 ganovelli first version Revision 1.2 2004/04/20 16:26:48 pietroni *** empty log message *** Revision 1.1 2004/04/15 08:54:20 pietroni *** empty log message *** Revision 1.1 2004/04/08 01:13:31 pietroni Initial commit ****************************************************************************/ #ifndef __VCG_TETRA3 #define __VCG_TETRA3 #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** Templated class for storing a generic tetrahedron */ class Tetra { public: //Tatrahedron Functions to retrieve information about relation between faces of tetrahedron(faces,adges,vertices). static int VofE(const int &indexE,const int &indexV) { assert ((indexE<6)&&(indexV<2)); static int edgevert[6][2] ={{0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}}; return (edgevert[indexE][indexV]); } static int VofF(const int &indexF,const int &indexV) { assert ((indexF<4)&&(indexV<3)); static int facevert[4][3]={{0,1,2}, {0,3,1}, {0,2,3}, {1,3,2}}; return (facevert[indexF][indexV]); } static int EofV(const int &indexV,const int &indexE) { assert ((indexE<3)&&(indexV<4)); static int vertedge[4][3]={{0,1,2}, {0,3,4}, {5,1,3}, {4,5,2}}; return vertedge[indexV][indexE]; } static int EofF(const int &indexF,const int &indexE) { assert ((indexF<4)&&(indexE<3)); static int faceedge[4][3]={{0,3,1}, {2,4,0}, {1,5,2}, {4,5,3} }; return faceedge [indexF][indexE]; } static int FofV(const int &indexV,const int &indexF) { assert ((indexV<4)&&(indexF<3)); static int vertface[4][3]={{0,1,2}, {0,3,1}, {0,2,3}, {1,3,2}}; return vertface[indexV][indexF]; } static int FofE(const int &indexE,const int &indexSide) { assert ((indexE<6)&&(indexSide<2)); static int edgeface[6][2]={{0,1}, {0,2}, {1,2}, {0,3}, {1,3}, {2,3}}; return edgeface [indexE][indexSide]; } static int VofEE(const int &indexE0,const int &indexE1) { assert ((indexE0<6)&&(indexE0>=0)); assert ((indexE1<6)&&(indexE1>=0)); static int edgesvert[6][6]={{-1,0,0,1,1,-1}, {0,-1,0,2,-1,2}, {0,0,-1,-1,3,3}, {1,2,-1,-1,1,2}, {1,-1,3,1,-1,3}, {-1,2,3,2,3,-1}}; return (edgesvert[indexE0][indexE1]); } static int VofFFF(const int &indexF0,const int &indexF1,const int &indexF2) { assert ((indexF0<4)&&(indexF0>=0)); assert ((indexF1<4)&&(indexF1>=0)); assert ((indexF2<4)&&(indexF2>=0)); static int facesvert[4][4][4]={ {//0 {-1,-1,-1,-1},{-1,-1,0,1},{-1,0,-1,2},{-1,1,2,-1} }, {//1 {-1,-1,0,1},{-1,-1,-1,-1},{0,-1,-1,3},{1,-1,3,-1} }, {//2 {-1,0,-1,2},{0,-1,-1,3},{-1,-1,-1,-1},{2,3,-1,-1} }, {//3 {-1,1,2,-1},{1,-1,3,-1},{2,3,-1,-1},{-1,-1,-1,-1} } }; return facesvert[indexF0][indexF1][indexF2]; } static int EofFF(const int &indexF0,const int &indexF1) { assert ((indexF0<4)&&(indexF0>=0)); assert ((indexF1<4)&&(indexF1>=0)); static int facesedge[4][4]={{-1, 0, 1, 3}, { 0, -1, 2, 4}, { 1, 2, -1, 5}, { 3, 4, 5, -1}}; return (facesedge[indexF0][indexF1]); } static int EofVV(const int &indexV0,const int &indexV1) { assert ((indexV0<4)&&(indexV0>=0)); assert ((indexV1<4)&&(indexV1>=0)); static int verticesedge[4][4]={{-1, 0, 1, 2}, { 0, -1, 3, 4}, { 1, 3, -1, 5}, { 2, 4, 5, -1}}; return verticesedge[indexV0][indexV1]; } static int FofVVV(const int &indexV0,const int &indexV1,const int &indexV2) { assert ((indexV0<4)&&(indexV0>=0)); assert ((indexV1<4)&&(indexV1>=0)); assert ((indexV2<4)&&(indexV2>=0)); static int verticesface[4][4][4]={ {//0 {-1,-1,-1,-1},{-1,-1,0,1},{-1,0,-1,2},{-1,1,2,-1} }, {//1 {-1,-1,0,1},{-1,-1,-1,-1},{0,-1,-1,3},{1,-1,3,-1} }, {//2 {-1,0,-1,2},{0,-1,-1,3},{-1,-1,-1,-1},{2,3,-1,-1} }, {//3 {-1,1,2,-1},{1,-1,3,-1},{2,3,-1,-1},{-1,-1,-1,-1} } }; return verticesface[indexV0][indexV1][indexV2]; } static int FofEE(const int &indexE0,const int &indexE1) { assert ((indexE0<6)&&(indexE0>=0)); assert ((indexE1<6)&&(indexE1>=0)); static int edgesface[6][6]={{-1,0,1,0,1,-1}, {0,-1,2,0,-1,2}, {1,2,-1,-1,1,2}, {0,0,-1,-1,3,3}, {1,-1,1,3,-1,3}, {-1,2,2,3,3,-1}}; return edgesface[indexE0][indexE1]; } }; /** Templated class for storing a generic tetrahedron in a 3D space. Note the relation with the Face class of TetraMesh complex, both classes provide the P(i) access functions to their points and therefore they share the algorithms on it (e.g. area, normal etc...) */ template class Tetra3:public Tetra { public: typedef Point3< ScalarType > CoordType; //typedef typename ScalarType ScalarType; /********************************************* **/ private: /// Vector of the 4 points that defines the tetrahedron CoordType _v[4]; public: /// Shortcut per accedere ai punti delle facce inline CoordType & P( const int j ) { return _v[j];} inline CoordType const & cP( const int j )const { return _v[j];} inline CoordType & P0( const int j ) { return _v[j];} inline CoordType & P1( const int j ) { return _v[(j+1)%4];} inline CoordType & P2( const int j ) { return _v[(j+2)%4];} inline CoordType & P3( const int j ) { return _v[(j+3)%4];} inline const CoordType & P0( const int j ) const { return _v[j];} inline const CoordType & P1( const int j ) const { return _v[(j+1)%4];} inline const CoordType & P2( const int j ) const { return _v[(j+2)%4];} inline const CoordType & P3( const int j ) const { return _v[(j+3)%4];} inline const CoordType & cP0( const int j ) const { return _v[j];} inline const CoordType & cP1( const int j ) const { return _v[(j+1)%4];} inline const CoordType & cP2( const int j ) const { return _v[(j+2)%4];} inline const CoordType & cP3( const int j ) const { return _v[(j+3)%4];} /// compute and return the barycenter of a tetrahedron CoordType ComputeBarycenter() { return((_v[0] + _v[1] + _v[2]+ _v[3])/4); } /// compute and return the solid angle on a vertex double SolidAngle(int vind) { double da0=DiedralAngle(EofV(vind,0)); double da1=DiedralAngle(EofV(vind,1)); double da2=DiedralAngle(EofV(vind,2)); return((da0 + da1 + da2)- M_PI); } /// compute and return the diadedral angle on an edge double DiedralAngle(int edgeind) { int f1=FofE(edgeind,0); int f2=FofE(edgeind,1); CoordType p0=_v[FofV(f1,0)]; CoordType p1=_v[FofV(f1,1)]; CoordType p2=_v[FofV(f1,2)]; CoordType norm1=((p1-p0)^(p2-p0)); p0=_v[FofV(f2,0)]; p1=_v[FofV(f2,1)]; p2=_v[FofV(f2,2)]; CoordType norm2=((p1-p0)^(p2-p0)); norm1.Normalize(); norm2.Normalize(); return (M_PI-acos(double(norm1*norm2))); } /// compute and return the aspect ratio of the tetrahedron ScalarType ComputeAspectRatio() { double a0=SolidAngle(0); double a1=SolidAngle(1); double a2=SolidAngle(2); double a3=SolidAngle(3); return (ScalarType)math::Min(a0,math::Min(a1,math::Min(a2,a3))); } ///return true of p is inside tetrahedron's volume bool IsInside(const CoordType &p) { //bb control vcg::Box3 bb; for (int i=0;i<4;i++) bb.Add(_v[i]); if (!bb.IsIn(p)) return false; vcg::Matrix44 M0; vcg::Matrix44 M1; vcg::Matrix44 M2; vcg::Matrix44 M3; vcg::Matrix44 M4; CoordType p1=_v[0]; CoordType p2=_v[1]; CoordType p3=_v[2]; CoordType p4=_v[3]; M0[0][0]=p1.V(0); M0[0][1]=p1.V(1); M0[0][2]=p1.V(2); M0[1][0]=p2.V(0); M0[1][1]=p2.V(1); M0[1][2]=p2.V(2); M0[2][0]=p3.V(0); M0[2][1]=p3.V(1); M0[2][2]=p3.V(2); M0[3][0]=p4.V(0); M0[3][1]=p4.V(1); M0[3][2]=p4.V(2); M0[0][3]=1; M0[1][3]=1; M0[2][3]=1; M0[3][3]=1; M1=M0; M1[0][0]=p.V(0); M1[0][1]=p.V(1); M1[0][2]=p.V(2); M2=M0; M2[1][0]=p.V(0); M2[1][1]=p.V(1); M2[1][2]=p.V(2); M3=M0; M3[2][0]=p.V(0); M3[2][1]=p.V(1); M3[2][2]=p.V(2); M4=M0; M4[3][0]=p.V(0); M4[3][1]=p.V(1); M4[3][2]=p.V(2); ScalarType d0=M0.Determinant(); ScalarType d1=M1.Determinant(); ScalarType d2=M2.Determinant(); ScalarType d3=M3.Determinant(); ScalarType d4=M4.Determinant(); // all determinant must have same sign return (((d0>0)&&(d1>0)&&(d2>0)&&(d3>0)&&(d4>0))||((d0<0)&&(d1<0)&&(d2<0)&&(d3<0)&&(d4<0))); } void InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &b, ScalarType &c ,ScalarType &d) { const ScalarType EPSILON = ScalarType(0.000001); Matrix33 M; CoordType v0=P(0)-P(2); CoordType v1=P(1)-P(2); CoordType v2=P(3)-P(2); CoordType v3=bq-P(2); M[0][0]=v0.X(); M[1][0]=v0.Y(); M[2][0]=v0.Z(); M[0][1]=v1.X(); M[1][1]=v1.Y(); M[2][1]=v1.Z(); M[0][2]=v2.X(); M[1][2]=v2.Y(); M[2][2]=v2.Z(); Matrix33 inv_M =vcg::Inverse(M); CoordType Barycentric=inv_M*v3; a=Barycentric.V(0); b=Barycentric.V(1); c=Barycentric.V(2); d=1-(a+b+c); } }; //end Class // compute and return the volume of a tetrahedron template typename TetraType::ScalarType ComputeVolume( const TetraType & t){ return (typename TetraType::ScalarType)((( t.cP(2)-t.cP(0))^(t.cP(1)-t.cP(0) ))*(t.cP(3)-t.cP(0))/6.0); } /// Returns the normal to the face face of the tetrahedron t template Point3 Normal( const TetraType &t,const int &face) { return(((t.cP(Tetra::VofF(face,1))-t.cP(Tetra::VofF(face,0)))^(t.cP(Tetra::VofF(face,2))-t.cP(Tetra::VofF(face,0)))).Normalize()); } /*@}*/ } // end namespace #endif