/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.1 2004/04/21 14:22:27 cignoni Initial Commit ****************************************************************************/ #ifndef __VCGLIB_INTERSECTION_3 #define __VCGLIB_INTERSECTION_3 #include #include #include #include #include #include #include /** \addtogroup space */ /*@{*/ /** Function computing the intersection between couple of geometric primitives in 3 dimension */ namespace vcg { /// interseciton between sphere and line template inline bool Intersection( const Sphere3 & sp, const Line3 & li, Point3 & p0,Point3 & p1 ){ // Per prima cosa si sposta il sistema di riferimento // fino a portare il centro della sfera nell'origine Point3 neworig=li.Origin()-sp.Center(); // poi si risolve il sistema di secondo grado (con maple...) T t1 = li.Direction().x()*li.Direction().x(); T t2 = li.Direction().y()*li.Direction().y(); T t3 = li.Direction().z()*li.Direction().z(); T t6 = neworig.y()*li.Direction().y(); T t7 = neworig.x()*li.Direction().x(); T t8 = neworig.z()*li.Direction().z(); T t15 = sp.Radius()*sp.Radius(); T t17 = neworig.z()*neworig.z(); T t19 = neworig.y()*neworig.y(); T t21 = neworig.x()*neworig.x(); T t28 = 2.0*t7*t6+2.0*t6*t8+2.0*t7*t8+t1*t15-t1*t17-t1*t19-t2*t21+t2*t15-t2*t17-t3*t21+t3*t15-t3*t19; if(t28<0) return false; T t29 = sqrt(t28); T val0 = 1/(t1+t2+t3)*(-t6-t7-t8+t29); T val1 = 1/(t1+t2+t3)*(-t6-t7-t8-t29); p0=li.P(val0); p1=li.P(val1); return true; } /// intersection between line and plane template inline bool Intersection( const Plane3 & pl, const Line3 & li, Point3 & po){ const T epsilon = T(1e-8); T k = pl.n * li.dire; // Compute 'k' factor if( (k > -epsilon) && (k < epsilon)) return false; T r = (pl.d - pl.n*li.orig)/k; // Compute ray distance po = li.orig + li.dire*r; return true; } /// intersection between segment and plane template inline bool Intersection( const Plane3 & pl, const Segment3 & sg, Point3 & po){ const T epsilon = T(1e-8); T k = pl.d - pl.n * (sg.P1()-sg.P0()); if( (k > -epsilon) && (k < epsilon)) return false; T r = (pl.d - pl.n*sg.P0())/k; // Compute ray distance if( (r<0) || (r > 1.0)) return false; po = sg.P0()*(1-r)+sg.P1() * r; return true; } /// intersection between two triangles template inline bool Intersection( Triangle3 t0,Triangle3 t1){ return NoDivTriTriIsect(t0.P0(0),t0.P0(1),t0.P0(2), t1.P0(0),t1.P0(1),t1.P0(2)); } template inline bool Intersection( Point3 V0,Point3 V1,Point3 V2, Point3 U0,Point3 U1,Point3 U2){ return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2); } template inline bool Intersection( Point3 V0,Point3 V1,Point3 V2, Point3 U0,Point3 U1,Point3 U2,int *coplanar, Point3 &isectpt1,Point3 &isectpt2){ return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2, coplanar,isectpt1,isectpt2); } template inline bool Intersection( Triangle3 t0,Triangle3 t1,bool &coplanar, Segment3 & sg){ Point3 ip0,ip1; return tri_tri_intersect_with_isectline(t0.P0(0),t0.P0(1),t0.P0(2), t1.P0(0),t1.P0(1),t1.P0(2), coplanar,sg.P0(),sg.P1() ); } } // end namespace #endif