/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2006 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.3 2007/01/11 10:12:19 cignoni Removed useless and conflicting inclusion of face.h Revision 1.2 2006/05/25 09:39:09 cignoni missing std and other gcc detected syntax errors Revision 1.1 2006/05/21 06:59:13 cignoni Initial Commit ****************************************************************************/ #ifndef __VCGLIB_TRIMESH_STAT #define __VCGLIB_TRIMESH_STAT // Standard headers // VCG headers #include #include #include #include #include #include #include namespace vcg { namespace tri{ template class Stat { public: typedef StatMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::FaceContainer FaceContainer; typedef typename vcg::Box3 Box3Type; static std::pair ComputePerVertexQualityMinMax( MeshType & m) // V1.0 { std::pair minmax = std::make_pair(std::numeric_limits::max(),-std::numeric_limits::max()); VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { if( (*vi).Q() < minmax.first) minmax.first=(*vi).Q(); if( (*vi).Q() > minmax.second) minmax.second=(*vi).Q(); } return minmax; } static std::pair ComputePerFaceQualityMinMax( MeshType & m) // V1.0 { std::pair minmax = std::make_pair(std::numeric_limits::max(),-std::numeric_limits::max()); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { if( (*fi).Q() < minmax.first) minmax.first =(*fi).Q(); if( (*fi).Q() > minmax.second) minmax.second=(*fi).Q(); } return minmax; } static ScalarType ComputeMeshArea(MeshType & m) { ScalarType area=0; FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) area += DoubleArea(*fi); return area/ScalarType(2.0); } static void ComputePerVertexQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly = false) // V1.0 { VertexIterator vi; int HistSize=10000; std::pair minmax = ComputePerVertexQualityMinMax(m); h.Clear(); h.SetRange( minmax.first,minmax.second, HistSize); for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) ) { assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)"); h.Add((*vi).Q()); } // Sanity check; If some very wrong value has happened in the Q value, // the histogram is messed. If a significant percentage (20% )of the values are all in a single bin // we should try to solve the problem. No easy solution here. // We choose to compute the get the 1percentile and 99 percentile values as new mixmax ranges // and just to be sure enlarge the Histogram. if(h.MaxCount() > HistSize/5) { std::vector QV; QV.reserve(m.vn); for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) QV.push_back((*vi).Q()); std::nth_element(QV.begin(),QV.begin()+m.vn/100,QV.end()); float newmin=*(QV.begin()+m.vn/100); std::nth_element(QV.begin(),QV.begin()+m.vn-m.vn/100,QV.end()); float newmax=*(QV.begin()+m.vn-m.vn/100); h.Clear(); h.SetRange(newmin, newmax, HistSize*50); for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) ) h.Add((*vi).Q()); } } static int ComputeEdgeHistogram( MeshType & m, Histogramf &h) // V1.0 { ScalarType Diag = m.bbox.Diag(); h.Clear(); h.SetRange( 0, Diag, 10000); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) { if(!(*fi).IsD()) { if( !(*fi).V(0)->IsS() && !(*fi).V(1)->IsS() ) { h.Add(Distance((*fi).V(0)->P(),(*fi).V(1)->P())); (*fi).V(0)->SetS(); (*fi).V(1)->SetS(); } if( !(*fi).V(1)->IsS() && !(*fi).V(2)->IsS()) { h.Add(Distance((*fi).V(1)->P(),(*fi).V(2)->P())); (*fi).V(2)->SetS(); (*fi).V(1)->SetS(); } if( !(*fi).V(2)->IsS() && !(*fi).V(0)->IsS()) { h.Add(Distance((*fi).V(2)->P(),(*fi).V(0)->P())); (*fi).V(0)->SetS(); (*fi).V(2)->SetS(); } } } VertexIterator vi; for(vi = m.vert.begin(); vi != m.vert.end(); ++vi) (*vi).ClearS(); return 0; } }; // end class } //End Namespace tri } // End Namespace vcg #endif