/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2006 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_LEGENDRE_H #define __VCGLIB_LEGENDRE_H #include namespace vcg { namespace math { /* * Contrary to their definition, the Associated Legendre Polynomials presented here are * only computed for positive m values. * */ template class Legendre { private : /** * Legendre Polynomial three term Recurrence Relation */ static inline ScalarType legendre_next(unsigned l, ScalarType P_lm1, ScalarType P_lm2, ScalarType x) { return ((2 * l + 1) * x * P_lm1 - l * P_lm2) / (l + 1); } /** * Associated Legendre Polynomial three term Recurrence Relation. * Raises the band index. */ static inline double legendre_next(unsigned l, unsigned m, ScalarType P_lm1, ScalarType P_lm2, ScalarType x) { return ((2 * l + 1) * x * P_lm1 - (l + m) * P_lm2) / (l + 1 - m); } /** * Recurrence relation to compute P_m_(m+1) given P_m_m at the same x */ static inline double legendre_P_m_mplusone(unsigned m, ScalarType p_m_m, ScalarType x) { return x * (2.0 * m + 1.0) * p_m_m; } /** * Starting relation to compute P_m_m according to the formula: * * pow(-1, m) * double_factorial(2 * m - 1) * pow(1 - x*x, abs(m)/2) * * which becomes, if x = cos(theta) : * * pow(-1, m) * double_factorial(2 * m - 1) * pow(sin(theta), abs(m)/2) */ static inline double legendre_P_m_m(unsigned m, ScalarType sin_theta) { ScalarType p_m_m = 1.0; if (m > 0) { ScalarType fact = 1.0; //Double factorial here for (unsigned i = 1; i <= m; ++i) { p_m_m *= fact * sin_theta; //raising sin_theta to the power of m/2 fact += 2.0; } if (m&1) //odd m { // Condon-Shortley Phase term p_m_m *= -1; } } return p_m_m; } static inline double legendre_P_l(unsigned l, ScalarType x) { ScalarType p0 = 1; ScalarType p1 = x; if (l == 0) return p0; for (unsigned n = 1; n < l; ++n) { Swap(p0, p1); p1 = legendre_next(n, p0, p1, x); } return p1; } /** * Computes the Associated Legendre Polynomial for any given * positive m and l, with m <= l and -1 <= x <= 1. */ static inline double legendre_P_l_m(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta) { if(m > l) return 0; if(m == 0) return legendre_P_l(l, cos_theta); //OK else { ScalarType p_m_m = legendre_P_m_m(m, sin_theta); //OK if (l == m) return p_m_m; ScalarType p_m_mplusone = legendre_P_m_mplusone(m, p_m_m, cos_theta); //OK if (l == m + 1) return p_m_mplusone; unsigned n = m + 1; while(n < l) { Swap(p_m_m, p_m_mplusone); p_m_mplusone = legendre_next(n, m, p_m_m, p_m_mplusone, cos_theta); ++n; } return p_m_mplusone; } } public : static double Polynomial(unsigned l, ScalarType x) { assert (x <= 1 && x >= -1); return legendre_P_l(l, x); } static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType x) { assert (m <= l && x <= 1 && x >= -1); return legendre_P_l_m(l, m, x, Sqrt(1.0 - x * x) ); } static double AssociatedPolynomial(unsigned l, unsigned m, ScalarType cos_theta, ScalarType sin_theta) { assert (m <= l && cos_theta <= 1 && cos_theta >= -1 && sin_theta <= 1 && sin_theta >= -1); return legendre_P_l_m(l, m, cos_theta, Abs(sin_theta)); } }; }} //vcg::math namespace #endif