/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_GLTRIMESH #define __VCG_GLTRIMESH #include #include //#include #include #include #include namespace vcg { // classe base di glwrap usata solo per poter usare i vari drawmode, normalmode senza dover // specificare tutto il tipo (a volte lunghissimo) // della particolare classe glwrap usata. class GLW { public: enum DrawMode {DMNone, DMBox, DMPoints, DMWire, DMHidden, DMFlat, DMSmooth, DMFlatWire, DMRadar, DMLast} ; enum NormalMode {NMNone, NMPerVert, NMPerFace, NMPerWedge, NMLast}; enum ColorMode {CMNone, CMPerMesh, CMPerFace, CMPerVert, CMLast}; enum TextureMode{TMNone, TMPerVert, TMPerWedge, TMPerWedgeMulti}; enum Hint { HNUseTriStrip = 0x0001, // ha bisogno che ci sia la fftopology gia calcolata! // HNUseEdgeStrip = 0x0002, // HNUseDisplayList = 0x0004, HNCacheDisplayList = 0x0008, // Each mode has its dl; HNLazyDisplayList = 0x0010, // Display list are generated only when requested HNIsTwoManifold = 0x0020, // There is no need to make DetachComplex before . HNUsePerWedgeNormal = 0x0040, // HNHasFFTopology = 0x0080, // E' l'utente che si preoccupa di tenere aggiornata la topologia ff HNHasVFTopology = 0x0100, // E' l'utente che si preoccupa di tenere aggiornata la topologia vf HNHasVertNormal = 0x0200, // E' l'utente che si preoccupa di tenere aggiornata le normali per faccia HNHasFaceNormal = 0x0400, // E' l'utente che si preoccupa di tenere aggiornata le normali per vertice HNUseVArray = 0x0800, HNUseLazyEdgeStrip = 0x1000, // Edge Strip are generated only when requested HNUseVBO = 0x2000, // Use Vertex Buffer Object HNIsPolygonal = 0x4000 // In wireframe modes, hide faux edges }; enum Change { CHVertex = 0x01, CHNormal = 0x02, CHColor = 0x04, CHFace = 0x08, CHFaceNormal = 0x10, CHRender = 0x20, CHAll = 0xff }; enum HintParami { HNPDisplayListSize =0, HNPPointDistanceAttenuation =1, HNPPointSmooth = 2 }; enum HintParamf { HNPCreaseAngle =0, // crease angle in radians HNPZTwist = 1, // Z offset used in Flatwire and hiddenline modality HNPPointSize = 2 // the point size used in point rendering }; template class VertToSplit { public: typename MESH_TYPE::face_base_pointer f; char z; char edge; bool newp; typename MESH_TYPE::vertex_pointer v; }; // GL Array Elemet class GLAElem { public : int glmode; int len; int start; }; }; template > class GlTrimesh : public GLW { public: typedef MESH_TYPE mesh_type; FACE_POINTER_CONTAINER face_pointers; std::vector TMId; unsigned int array_buffers[3]; int curr_hints; // the current hints // The parameters of hints int HNParami[8]; float HNParamf[8]; MESH_TYPE *m; GlTrimesh() { m=0; dl=0xffffffff; curr_hints=HNUseLazyEdgeStrip; cdm=DMNone; ccm=CMNone; cnm=NMNone; SetHintParamf(HNPCreaseAngle,float(M_PI/5)); SetHintParamf(HNPZTwist,0.00005f); SetHintParamf(HNPPointSize,1.0f); SetHintParami(HNPPointDistanceAttenuation, 1); SetHintParami(HNPPointSmooth, 0); } ~GlTrimesh() { //Delete the VBOs if(curr_hints&HNUseVBO) { for(int i=0;i<3;++i) if(glIsBuffer(array_buffers[i])) glDeleteBuffersARB(1, (GLuint *)(array_buffers+i)); } } void SetHintParami(const HintParami hip, const int value) { HNParami[hip]=value; } int GetHintParami(const HintParami hip) const { return HNParami[hip]; } void SetHintParamf(const HintParamf hip, const float value) { HNParamf[hip]=value; } float GetHintParamf(const HintParamf hip) const { return HNParamf[hip]; } void SetHint(Hint hn) { curr_hints |= hn; } void ClearHint(Hint hn) { curr_hints&=(~hn); } unsigned int dl; std::vector indices; DrawMode cdm; // Current DrawMode NormalMode cnm; // Current NormalMode ColorMode ccm; // Current ColorMode void Update(/*Change c=CHAll*/) { if(m==0) return; if(curr_hints&HNUseVArray || curr_hints&HNUseVBO) { typename MESH_TYPE::FaceIterator fi; indices.clear(); for(fi = m->face.begin(); fi != m->face.end(); ++fi) { indices.push_back((unsigned int)((*fi).V(0) - &(*m->vert.begin()))); indices.push_back((unsigned int)((*fi).V(1) - &(*m->vert.begin()))); indices.push_back((unsigned int)((*fi).V(2) - &(*m->vert.begin()))); } if(curr_hints&HNUseVBO) { if(!glIsBuffer(array_buffers[1])) glGenBuffers(2,(GLuint*)array_buffers); glBindBuffer(GL_ARRAY_BUFFER,array_buffers[0]); glBufferData(GL_ARRAY_BUFFER_ARB, m->vn * sizeof(typename MESH_TYPE::VertexType), (char *)&(m->vert[0].P()), GL_STATIC_DRAW_ARB); glBindBuffer(GL_ARRAY_BUFFER,array_buffers[1]); glBufferData(GL_ARRAY_BUFFER_ARB, m->vn * sizeof(typename MESH_TYPE::VertexType), (char *)&(m->vert[0].N()), GL_STATIC_DRAW_ARB); } glVertexPointer(3,GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),0); glNormalPointer(GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),0); } //int C=c; //if((C&CHVertex) || (C&CHFace)) { // ComputeBBox(*m); // if(!(curr_hints&HNHasFaceNormal)) m->ComputeFaceNormal(); // if(!(curr_hints&HNHasVertNormal)) m->ComputeVertexNormal(); // C= (C | CHFaceNormal); //} //if((C&CHFace) && (curr_hints&HNUseEdgeStrip)) ComputeEdges(); //if((C&CHFace) && (curr_hints&HNUseLazyEdgeStrip)) ClearEdges(); //if(MESH_TYPE::HasFFTopology()) // if((C&CHFace) && (curr_hints&HNUseTriStrip)) { // if(!(curr_hints&HNHasFFTopology)) m->FFTopology(); // ComputeTriStrip(); // } //if((C&CHFaceNormal) && (curr_hints&HNUsePerWedgeNormal)) { // if(!(curr_hints&HNHasVFTopology)) m->VFTopology(); // CreaseWN(*m,MESH_TYPE::scalar_type(GetHintParamf(HNPCreaseAngle))); //} //if(C!=0) { // force the recomputation of display list // cdm=DMNone; // ccm=CMNone; // cnm=NMNone; //} //if((curr_hints&HNUseVArray) && (curr_hints&HNUseTriStrip)) // { // ConvertTriStrip(*m,TStrip,TStripF,TStripVED,TStripVEI); // } } void Draw(DrawMode dm ,ColorMode cm, TextureMode tm) { switch(dm) { case DMNone : Draw(cm,tm); break; case DMBox : Draw(cm,tm); break; case DMPoints : Draw(cm,tm); break; case DMWire : Draw(cm,tm); break; case DMHidden : Draw(cm,tm); break; case DMFlat : Draw(cm,tm); break; case DMSmooth : Draw(cm,tm); break; case DMFlatWire: Draw(cm,tm); break; default : break; } } template< DrawMode dm > void Draw(ColorMode cm, TextureMode tm) { switch(cm) { case CMNone : Draw(tm); break; case CMPerMesh : Draw(tm); break; case CMPerFace : Draw(tm); break; case CMPerVert : Draw(tm); break; default : break; } } template< DrawMode dm, ColorMode cm > void Draw(TextureMode tm) { switch(tm) { case TMNone : Draw(); break; case TMPerVert : Draw(); break; case TMPerWedge : Draw(); break; case TMPerWedgeMulti : Draw(); break; default : break; } } template< DrawMode dm, ColorMode cm, TextureMode tm> void Draw() { if(!m) return; if((curr_hints & HNUseDisplayList)){ if (cdm==dm && ccm==cm){ glCallList(dl); return; } else { if(dl==0xffffffff) dl=glGenLists(1); glNewList(dl,GL_COMPILE); } } glPushMatrix(); switch(dm) { case DMNone : break; case DMBox : DrawBBox(cm);break; case DMPoints : DrawPoints();break; case DMHidden : DrawHidden();break; case DMFlat : DrawFill();break; case DMFlatWire : DrawFlatWire();break; case DMRadar : DrawRadar();break; case DMWire : DrawWire();break; case DMSmooth : DrawFill();break; default : break; } glPopMatrix(); if((curr_hints & HNUseDisplayList)){ cdm=dm; ccm=cm; glEndList(); glCallList(dl); } } /*********************************************************************************************/ /*********************************************************************************************/ template void DrawFill() { if(m->fn==0) return; typename FACE_POINTER_CONTAINER::iterator fp; typename MESH_TYPE::FaceIterator fi; typename std::vector::iterator fip; short curtexname=-1; if(cm == CMPerMesh) glColor(m->C()); if(tm == TMPerWedge || tm == TMPerWedgeMulti ) glDisable(GL_TEXTURE_2D); if(curr_hints&HNUseVBO) { if( (cm==CMNone) || (cm==CMPerMesh) ) { if (nm==NMPerVert) glEnableClientState (GL_NORMAL_ARRAY); glEnableClientState (GL_VERTEX_ARRAY); if (nm==NMPerVert) { glBindBuffer(GL_ARRAY_BUFFER,array_buffers[1]); glNormalPointer(GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),0); } glBindBuffer(GL_ARRAY_BUFFER,array_buffers[0]); glVertexPointer(3,GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),0); glDrawElements(GL_TRIANGLES ,m->fn*3,GL_UNSIGNED_INT, &(*indices.begin()) ); glDisableClientState (GL_VERTEX_ARRAY); if (nm==NMPerVert) glDisableClientState (GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, 0); return; } } if(curr_hints&HNUseVArray) { if( (cm==CMNone) || (cm==CMPerMesh) ) { if (nm==NMPerVert) glEnableClientState (GL_NORMAL_ARRAY); glEnableClientState (GL_VERTEX_ARRAY); if (nm==NMPerVert) glNormalPointer(GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),&(m->vert.begin()->N()[0])); glVertexPointer(3,GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),&(m->vert.begin()->P()[0])); glDrawElements(GL_TRIANGLES ,m->fn*3,GL_UNSIGNED_INT, &(*indices.begin()) ); glDisableClientState (GL_VERTEX_ARRAY); if (nm==NMPerVert) glDisableClientState (GL_NORMAL_ARRAY); return; } } else if(curr_hints&HNUseTriStrip) { //if( (nm==NMPerVert) && ((cm==CMNone) || (cm==CMPerMesh))) // if(curr_hints&HNUseVArray){ // glEnableClientState (GL_NORMAL_ARRAY ); // glNormalPointer(GL_FLOAT,sizeof(MESH_TYPE::VertexType),&(m->vert[0].cN())); // glEnableClientState (GL_VERTEX_ARRAY); // glVertexPointer(3,GL_FLOAT,sizeof(MESH_TYPE::VertexType),&(m->vert[0].cP())); // std::vector::iterator vi; // for(vi=TStripVED.begin();vi!=TStripVED.end();++vi) // glDrawElements(vi->glmode ,vi->len,GL_UNSIGNED_SHORT,&TStripVEI[vi->start] ); // // glDisableClientState (GL_NORMAL_ARRAY ); // glDisableClientState (GL_VERTEX_ARRAY); // return; // } //std::vector< MESH_TYPE::VertexType *>::iterator vi; //glBegin(GL_TRIANGLE_STRIP); //if(nm == NMPerFace) fip=TStripF.begin(); //for(vi=TStrip.begin();vi!=TStrip.end(); ++vi){ // if((*vi)){ // if(nm==NMPerVert) glNormal((*vi)->cN()); // if(nm==NMPerFace) glNormal((*fip)->cN()); // glVertex((*vi)->P()); // } // else // { // glEnd(); // glBegin(GL_TRIANGLE_STRIP); // } // if(nm == NMPerFace) ++fip; // } //glEnd(); } else { if(partial) fp = face_pointers.begin(); else fi = m->face.begin(); if(tm==TMPerWedgeMulti) { curtexname=(*fi).WT(0).n(); if (curtexname >= 0) { glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D,TMId[curtexname]); } else { glDisable(GL_TEXTURE_2D); } } if(tm==TMPerWedge) glEnable(GL_TEXTURE_2D); if(tm==TMPerVert && !TMId.empty()) // in the case of per vertex tex coord we assume that we have a SINGLE texture. { curtexname = 0; glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D,TMId[curtexname]); } glBegin(GL_TRIANGLES); while( (partial)?(fp!=face_pointers.end()):(fi!=m->face.end())) { typename MESH_TYPE::FaceType & f = (partial)?(*(*fp)): *fi; if(!f.IsD()) { if(tm==TMPerWedgeMulti) if(f.WT(0).n() != curtexname) { curtexname=(*fi).WT(0).n(); glEnd(); if (curtexname >= 0) { glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D,TMId[curtexname]); } else { glDisable(GL_TEXTURE_2D); } glBegin(GL_TRIANGLES); } if(nm == NMPerFace) glNormal(f.cN()); if(nm == NMPerVert) glNormal(f.V(0)->cN()); if(nm == NMPerWedge)glNormal(f.WN(0)); if(cm == CMPerFace) glColor(f.C()); if(cm == CMPerVert) glColor(f.V(0)->C()); if(tm==TMPerVert) glTexCoord(f.V(0)->T().P()); if( (tm==TMPerWedge)||(tm==TMPerWedgeMulti) )glTexCoord(f.WT(0).t(0)); glVertex(f.V(0)->P()); if(nm == NMPerVert) glNormal(f.V(1)->cN()); if(nm == NMPerWedge)glNormal(f.WN(1)); if(cm == CMPerVert) glColor(f.V(1)->C()); if(tm==TMPerVert) glTexCoord(f.V(1)->T().P()); if( (tm==TMPerWedge)|| (tm==TMPerWedgeMulti)) glTexCoord(f.WT(1).t(0)); glVertex(f.V(1)->P()); if(nm == NMPerVert) glNormal(f.V(2)->cN()); if(nm == NMPerWedge)glNormal(f.WN(2)); if(cm == CMPerVert) glColor(f.V(2)->C()); if(tm==TMPerVert) glTexCoord(f.V(2)->T().P()); if( (tm==TMPerWedge)|| (tm==TMPerWedgeMulti)) glTexCoord(f.WT(2).t(0)); glVertex(f.V(2)->P()); } if(partial) ++fp; else ++fi; } glEnd(); } } // A draw wireframe that hides faux edges template void DrawWirePolygonal() { typename MESH_TYPE::FaceIterator fi; typename FACE_POINTER_CONTAINER::iterator fp; typename std::vector::iterator fip; if(cm == CMPerMesh) glColor(m->C()); { if(partial) fp = face_pointers.begin(); else fi = m->face.begin(); glBegin(GL_LINES); while( (partial)?(fp!=face_pointers.end()):(fi!=m->face.end())) { typename MESH_TYPE::FaceType & f = (partial)?(*(*fp)): *fi; if(!f.IsD()) { if(nm == NMPerFace) glNormal(f.cN()); if(cm == CMPerFace) glColor(f.C()); if (!f.IsF(0)) { if(nm == NMPerVert) glNormal(f.V(0)->cN()); if(nm == NMPerWedge)glNormal(f.WN(0)); if(cm == CMPerVert) glColor(f.V(0)->C()); glVertex(f.V(0)->P()); if(nm == NMPerVert) glNormal(f.V(1)->cN()); if(nm == NMPerWedge)glNormal(f.WN(1)); if(cm == CMPerVert) glColor(f.V(1)->C()); glVertex(f.V(1)->P()); } if (!f.IsF(1)) { if(nm == NMPerVert) glNormal(f.V(1)->cN()); if(nm == NMPerWedge)glNormal(f.WN(1)); if(cm == CMPerVert) glColor(f.V(1)->C()); glVertex(f.V(1)->P()); if(nm == NMPerVert) glNormal(f.V(2)->cN()); if(nm == NMPerWedge)glNormal(f.WN(2)); if(cm == CMPerVert) glColor(f.V(2)->C()); glVertex(f.V(2)->P()); } if (!f.IsF(2)) { if(nm == NMPerVert) glNormal(f.V(2)->cN()); if(nm == NMPerWedge)glNormal(f.WN(2)); if(cm == CMPerVert) glColor(f.V(2)->C()); glVertex(f.V(2)->P()); if(nm == NMPerVert) glNormal(f.V(0)->cN()); if(nm == NMPerWedge)glNormal(f.WN(0)); if(cm == CMPerVert) glColor(f.V(0)->C()); glVertex(f.V(0)->P()); } } if(partial) ++fp; else ++fi; } glEnd(); } } /// Basic Point drawing fucntion // works also for mesh with deleted vertices template void DrawPointsBase() { typename MESH_TYPE::VertexIterator vi; glBegin(GL_POINTS); if(cm==CMPerMesh) glColor(m->C()); for(vi=m->vert.begin();vi!=m->vert.end();++vi)if(!(*vi).IsD()) { if(nm==NMPerVert) glNormal((*vi).cN()); if(cm==CMPerVert) glColor((*vi).C()); glVertex((*vi).P()); } glEnd(); } /// Utility function that computes in eyespace the current distance between the camera and the center of the bbox of the mesh double CameraDistance(){ Point3 res; Matrix44 mm; glGetv(GL_MODELVIEW_MATRIX,mm); Point3 c=m->bbox.Center(); res=mm*c; return Norm(res); } template void DrawPoints() { glPushAttrib(GL_ENABLE_BIT | GL_POINT_BIT); if(GetHintParami(HNPPointSmooth)>0) glEnable(GL_POINT_SMOOTH); else glDisable(GL_POINT_SMOOTH); glPointSize(GetHintParamf(HNPPointSize)); if (glPointParameterfv) { if(GetHintParami(HNPPointDistanceAttenuation)>0) { float camDist = (float)CameraDistance(); float quadratic[] = { 0.0f, 0.0f, 1.0f/(camDist*camDist) , 0.0f }; glPointParameterfv( GL_POINT_DISTANCE_ATTENUATION, quadratic ); glPointParameterf( GL_POINT_SIZE_MAX, 16.0f ); glPointParameterf( GL_POINT_SIZE_MIN, 1.0f ); } else { float quadratic[] = { 1.0f, 0.0f, 0.0f}; glPointParameterfv( GL_POINT_DISTANCE_ATTENUATION, quadratic ); glPointSize(GetHintParamf(HNPPointSize)); } } if(m->vn!=(int)m->vert.size()) { DrawPointsBase(); } else { if(cm==CMPerMesh) glColor(m->C()); // Perfect case, no deleted stuff, // draw the vertices using vertex arrays if (nm==NMPerVert) { glEnableClientState (GL_NORMAL_ARRAY); if (m->vert.size() != 0) glNormalPointer(GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),&(m->vert.begin()->N()[0])); } if (cm==CMPerVert) { glEnableClientState (GL_COLOR_ARRAY); if (m->vert.size() != 0) glColorPointer(4,GL_UNSIGNED_BYTE,sizeof(typename MESH_TYPE::VertexType),&(m->vert.begin()->C()[0])); } glEnableClientState (GL_VERTEX_ARRAY); if (m->vert.size() != 0) glVertexPointer(3,GL_FLOAT,sizeof(typename MESH_TYPE::VertexType),&(m->vert.begin()->P()[0])); glDrawArrays(GL_POINTS,0,m->vn); glDisableClientState (GL_VERTEX_ARRAY); if (nm==NMPerVert) glDisableClientState (GL_NORMAL_ARRAY); if (cm==CMPerVert) glDisableClientState (GL_COLOR_ARRAY); } glPopAttrib(); return; } void DrawHidden() { //const float ZTWIST=HNParamf[HNPZTwist]; glPushAttrib(GL_ENABLE_BIT | GL_CURRENT_BIT | GL_LIGHTING_BIT ); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(1.0, 1); //glDepthRange(ZTWIST,1.0f); glDisable(GL_LIGHTING); glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE); DrawFill(); glDisable(GL_POLYGON_OFFSET_FILL); glEnable(GL_LIGHTING); glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE); //glDepthRange(0.0f,1.0f-ZTWIST); DrawWire(); glPopAttrib(); // glDepthRange(0,1.0f); } template void DrawFlatWire() { //const float ZTWIST=HNParamf[HNPZTwist]; //glDepthRange(ZTWIST,1.0f); glPushAttrib(GL_ENABLE_BIT | GL_CURRENT_BIT | GL_LIGHTING_BIT ); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(1.0, 1); DrawFill(); glDisable(GL_POLYGON_OFFSET_FILL); //glDepthRange(0.0f,1.0f-ZTWIST); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE); //glColorMaterial(GL_FRONT,GL_DIFFUSE); glColor3f(.3f,.3f,.3f); DrawWire(); glPopAttrib(); //glDepthRange(0,1.0f); } template void DrawRadar() { const float ZTWIST=HNParamf[HNPZTwist]; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glDepthMask(0); glDepthRange(ZTWIST,1.0f); if (cm == CMNone) glColor4f(0.2f, 1.0f, 0.4f, 0.2f); // DrawFill(); Draw(); glDepthMask(1); glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE); // DrawFill(); Draw(); glDepthRange(0.0f,1.0f-ZTWIST); glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE); glColor4f(0.1f, 1.0f, 0.2f, 0.6f); Draw(); glDisable(GL_BLEND); glDepthRange(0,1.0f); } #ifdef GL_TEXTURE0_ARB // Multitexturing nel caso voglia usare due texture unit. void DrawTexture_NPV_TPW2() { unsigned int texname=(*(m->face.begin())).WT(0).n(0); glBindTexture(GL_TEXTURE_2D,TMId[texname]); typename MESH_TYPE::FaceIterator fi; glBegin(GL_TRIANGLES); for(fi=m->face.begin();fi!=m->face.end();++fi)if(!(*fi).IsD()){ if(texname!=(*fi).WT(0).n(0)) { texname=(*fi).WT(0).n(0); glEnd(); glBindTexture(GL_TEXTURE_2D,TMId[texname]); glBegin(GL_TRIANGLES); } glMultiTexCoordARB(GL_TEXTURE0_ARB, (*fi).WT(0).t(0)); glMultiTexCoordARB(GL_TEXTURE1_ARB, (*fi).WT(0).t(0)); glNormal((*fi).V(0)->N()); glVertex((*fi).V(0)->P()); glMultiTexCoordARB(GL_TEXTURE0_ARB, (*fi).WT(1).t(0)); glMultiTexCoordARB(GL_TEXTURE1_ARB, (*fi).WT(1).t(0)); glNormal((*fi).V(1)->N()); glVertex((*fi).V(1)->P()); glMultiTexCoordARB(GL_TEXTURE0_ARB, (*fi).WT(2).t(0)); glMultiTexCoordARB(GL_TEXTURE1_ARB, (*fi).WT(2).t(0)); glNormal((*fi).V(2)->N()); glVertex((*fi).V(2)->P()); } glEnd(); } #endif /*int MemUsed() { int tot=sizeof(GlTrimesh); tot+=sizeof(mesh_type::edge_type)*edge.size(); tot+=sizeof(MESH_TYPE::VertexType *) * EStrip.size(); tot+=sizeof(MESH_TYPE::VertexType *) * TStrip.size(); tot+=sizeof(MESH_TYPE::FaceType *) * TStripF.size(); return tot; }*/ private: template void DrawWire() { //if(!(curr_hints & (HNUseEdgeStrip | HNUseLazyEdgeStrip) ) ) if ( (curr_hints & HNIsPolygonal) ) { DrawWirePolygonal(); } else { glPushAttrib(GL_POLYGON_BIT); glPolygonMode(GL_FRONT_AND_BACK ,GL_LINE); DrawFill(); glPopAttrib(); } // { // if(!HasEdges()) ComputeEdges(); //if(cm==CMPerMesh) glColor(m->C()); //std::vector< MESH_TYPE::VertexType *>::iterator vi; //glBegin(GL_LINE_STRIP); //for(vi=EStrip.begin();vi!=EStrip.end(); ++vi){ // if((*vi)){ // glNormal((*vi)->N()); // glVertex((*vi)->P()); // } // else // { // glEnd(); // glBegin(GL_LINE_STRIP); // } //} //glEnd(); // } } void DrawBBox(ColorMode cm) { if(cm==CMPerMesh) glColor(m->C()); glBoxWire(m->bbox); } };// end class /* Crease Angle Assume che: la mesh abbia la topologia ff la mesh non abbia complex (o se li aveva fossero stati detached) Abbia le normali per faccia normalizzate!! Prende una mesh e duplica tutti gli edge le cui normali nelle facce incidenti formano un angolo maggiore di (espresso in rad). foreach face foreach unvisited vert vi scan the star of triangles around vi duplicating vi each time we encounter a crease angle. the new (and old) vertexes are put in a std::vector that is swapped with the original one at the end. */ // uncomment one of the following line to enable the Verbose Trace for Crease #define VCTRACE (void)0 //#define VCTRACE TRACE template void Crease(MESH_TYPE &m, typename MESH_TYPE::scalar_type angleRad) { assert(m.HasFFTopology()); typename MESH_TYPE::scalar_type cosangle=Cos(angleRad); std::vector > SPL; std::vector newvert; newvert.reserve(m.fn*3); // indica se un il vertice z della faccia e' stato processato enum {VISITED_0= MESH_TYPE::FaceType::USER0, VISITED_1= MESH_TYPE::FaceType::USER0<<1, VISITED_2= MESH_TYPE::FaceType::USER0<<2} ; int vis[3]={VISITED_0,VISITED_1,VISITED_2}; //int _t2=clock(); typename MESH_TYPE::FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) (*fi).Supervisor_Flags()&= (~(VISITED_0 | VISITED_1 | VISITED_2)); for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if(!((*fi).Supervisor_Flags() & (vis[j]))) { //VCTRACE("Face %i Spinning around vertex %i\n",fi-m.face.begin(), (*fi).V(j)-m.vert.begin()); //(*fi).Supervisor_Flags() |= vis[j]; typename MESH_TYPE::hedgepos_type he(&*fi,j,(*fi).V(j)); typename MESH_TYPE::hedgepos_type she=he; typename MESH_TYPE::face_base_pointer nextf; GLW::VertToSplit spl; spl.newp=false; spl.edge=-1; //Primo giro per trovare un bordo da cui partire do { he.FlipF(); he.FlipE(); if(he.IsBorder()) break; } while(he!=she); if(he==she) // non c'e'bordi allora si cerca un crease { do { he.FlipF(); he.FlipE(); nextf=he.f->F(he.z); typename MESH_TYPE::scalar_type ps=nextf->N()*he.f->N(); if(psV(he.z)) vz=he.z; if(he.v == he.f->V((he.z+1)%3)) vz=(he.z+1)%3; assert((he.f->Supervisor_Flags() & vis[vz] )==0); } while(he!=she); } he.FlipE(); she=he; newvert.push_back(*(*fi).V(j)); typename MESH_TYPE::vertex_pointer curvert=&newvert.back(); // VCTRACE("Starting from face %i edge %i vert %i \n",he.f-m.face.begin(), he.z, he.v-m.vert.begin()); // Secondo giro in cui si riempie il vettore SPL con tutte le info per fare i nuovi vertici do{ //TRACE(" -- spinning face %i edge %i vert %i\n",he.f-m.face.begin(), he.z, he.v-m.vert.begin()); spl.v=curvert; spl.f=he.f; spl.z=-1; if(he.v == he.f->V(he.z)) spl.z=he.z; if(he.v == he.f->V((he.z+1)%3)) spl.z=(he.z+1)%3; assert(spl.z>=0); //VCTRACE(" -- spinning face vert %i Adding spl face %i vert %i\n", // he.v-m.vert.begin(), spl.f-m.face.begin(), spl.z ); assert((spl.f->Supervisor_Flags() & vis[spl.z] )==0); spl.f->Supervisor_Flags() |= vis[spl.z]; SPL.push_back(spl); spl.newp=false; spl.edge=-1; if(he.IsBorder()) break; nextf=he.f->F(he.z); if(nextf==she.f) break; typename MESH_TYPE::scalar_type ps=nextf->N()*he.f->N(); if(ps >::iterator vsi; for(vsi=SPL.begin();vsi!=SPL.end();++vsi) { (*vsi).f->V((*vsi).z)=(*vsi).v; if((*vsi).newp){ assert((*vsi).edge>=0 && (*vsi).edge<3); if(!(*vsi).f->IsBorder( (*vsi).edge) ) (*vsi).f->Detach((*vsi).edge); } } m.vert.math::Swap(newvert); m.vn=m.vert.size(); } /* Secondo tipo di crease angle. ha bisogno del per wedge normal e delle adiacence per vertice faccia gia fatte; Assume che le normali per faccia siano gia'state fatte (se ci sono) */ /*template void CreaseWN(MESH_TYPE &m, typename MESH_TYPE::scalar_type angle) { if(!(MESH_TYPE::FaceType::OBJ_TYPE & MESH_TYPE::FaceType::OBJ_TYPE_WN) ) { assert(0); // You needs a mesh with faces having per wedge normals return; } typename MESH_TYPE::scalar_type cosangle=Cos(angle); typename MESH_TYPE::FaceIterator fi; // Clear the per wedge normals for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { (*fi).WN(0)=MESH_TYPE::vectorial_type(0,0,0); (*fi).WN(1)=MESH_TYPE::vectorial_type(0,0,0); (*fi).WN(2)=MESH_TYPE::vectorial_type(0,0,0); } typename MESH_TYPE::FaceType::vectorial_type nn; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { nn=(*fi).cN(); for(int i=0;i<3;++i) { VEdgePosB x; for(x.f = (*fi).V(i)->Fp(), x.z = (*fi).V(i)->Zp(); x.f!=0; x.NextF() ) { assert(x.f->V(x.z)==(*fi).V(i)); if(x.f->cN()*nn > cosangle) x.f->WN(x.z)+=nn; } } } }*/ } // end namespace #endif