vcglib/apps/metro/metro.cpp

320 lines
14 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.13 2005/01/24 15:46:48 cignoni
Release 4.04
Moved to the library core the code for computing min distance froma a point to a mesh using a uniform grid.
Slightly faster.
Revision 1.12 2005/01/03 11:28:52 cignoni
Release 4.03
Better ply compatibility, and improved error reporting
Revision 1.11 2004/11/29 09:07:04 cignoni
Release 4.02
removed bug in printing Hausdorf distance,
removed bug in command line parsing,
upgraded import mesh library to support off format
Revision 1.10 2004/09/21 23:52:50 cignoni
Release 4.01
Revision 1.9 2004/09/20 16:29:08 ponchio
Minimal changes.
Revision 1.8 2004/09/20 15:17:28 cignoni
Removed bug in displays msec and better usage messages
Revision 1.7 2004/09/09 22:59:15 cignoni
Removed many small warnings
Revision 1.6 2004/07/15 00:15:16 cignoni
inflate -> offset
Revision 1.5 2004/06/24 09:08:31 cignoni
Official Release of Metro 4.00
Revision 1.4 2004/05/14 13:53:12 ganovelli
GPL added
****************************************************************************/
// -----------------------------------------------------------------------------------------------
// standard libraries
#include <time.h>
// project definitions.
#include "defs.h"
#include "sampling.h"
#include "mesh_type.h"
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/update/bounding.h>
#include <vcg/math/histogram.h>
#include <vcg/complex/trimesh/clean.h>
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>
// -----------------------------------------------------------------------------------------------
using namespace std;
using namespace vcg;
////////////////// Command line Flags and parameters
bool NumberOfSamples = false;
bool SamplesPerAreaUnit = false;
bool CleaningFlag=false;
// -----------------------------------------------------------------------------------------------
void Usage()
{
printf("\nUsage: "\
"metro file1 file2 [opt]\n"\
"Where opt can be:\n"\
" -v disable vertex sampling\n"\
" -e disable edge sampling\n"\
" -f disable face sampling\n"\
" -u ignore unreferred vertices\n"\
" -sx set the face sampling mode\n"\
" where x can be:\n"\
" -s0 montecarlo sampling\n"\
" -s1 subdivision sampling\n"\
" -s2 similar triangles sampling (Default)\n"\
" -n# set the required number of samples (overrides -A)\n"\
" -a# set the required number of samples per area unit (overrides -N)\n"\
" -c save a mesh with error as per-vertex colour and quality\n"\
" -C # # Set the min/max values used for color mapping\n"\
" -L Remove duplicated and unreferenced vertices before processing\n"\
"\n"
"Default options are to sample vertexes, edge and faces by taking \n"
"a number of samples that is approx. 10x the face number.\n"
);
exit(-1);
}
// simple aux function that compute the name for the file containing the stored computations
std::string SaveFileName(const std::string &filename)
{
int pos=filename.find_last_of('.',filename.length());
std::string fileout=filename.substr(0,pos)+"_metro.ply";
return fileout;
}
// Open Mesh
void OpenMesh(const char *filename, CMesh &m)
{
int err = tri::io::Importer<CMesh>::Open(m,filename);
if(err) {
printf("Error in reading %s: '%s'\n",filename,tri::io::Importer<CMesh>::ErrorMsg(err));
exit(-1);
}
printf("read mesh `%s'\n", filename);
if(CleaningFlag){
int dup = tri::Clean<CMesh>::RemoveDuplicateVertex(m);
int unref = tri::Clean<CMesh>::RemoveUnreferencedVertex(m);
printf("Removed %i duplicate and %i unreferenced vertices from mesh %s\n",dup,unref,filename);
}
}
int main(int argc, char**argv)
{
CMesh S1, S2;
float ColorMin=0, ColorMax=0;
double dist1_max, dist2_max;
unsigned long n_samples_target, elapsed_time;
double n_samples_per_area_unit;
int flags;
// print program info
printf("-------------------------------\n"
" Metro V.4.04 \n"
" http://vcg.isti.cnr.it\n"
" release date: "__DATE__"\n"
"-------------------------------\n\n");
if(argc <= 2) Usage();
// default parameters
flags = SamplingFlags::VERTEX_SAMPLING |
SamplingFlags::EDGE_SAMPLING |
SamplingFlags::FACE_SAMPLING |
SamplingFlags::SIMILAR_SAMPLING;
// parse command line.
for(int i=3; i < argc;)
{
if(argv[i][0]=='-')
switch(argv[i][1])
{
case 'v' : flags &= ~SamplingFlags::VERTEX_SAMPLING; break;
case 'e' : flags &= ~SamplingFlags::EDGE_SAMPLING; break;
case 'f' : flags &= ~SamplingFlags::FACE_SAMPLING; break;
case 'u' : flags |= SamplingFlags::INCLUDE_UNREFERENCED_VERTICES; break;
case 's' :
switch(argv[i][2])
{
case '0': flags = (flags | SamplingFlags::MONTECARLO_SAMPLING ) & (~ SamplingFlags::NO_SAMPLING );break;
case '1': flags = (flags | SamplingFlags::SUBDIVISION_SAMPLING ) & (~ SamplingFlags::NO_SAMPLING );break;
case '2': flags = (flags | SamplingFlags::SIMILAR_SAMPLING ) & (~ SamplingFlags::NO_SAMPLING );break;
default : printf(MSG_ERR_INVALID_OPTION, argv[i]);
exit(0);
}
break;
case 'n': NumberOfSamples = true; n_samples_target = (unsigned long) atoi(&(argv[i][2])); break;
case 'a': SamplesPerAreaUnit = true; n_samples_per_area_unit = (unsigned long) atoi(&(argv[i][2])); break;
case 'c': flags |= SamplingFlags::SAVE_ERROR; break;
case 'L': CleaningFlag=true; break;
case 'C': ColorMin=float(atof(argv[i+1])); ColorMax=float(atof(argv[i+2])); i+=2; break;
default : printf(MSG_ERR_INVALID_OPTION, argv[i]);
exit(0);
}
i++;
}
// load input meshes.
OpenMesh(argv[1],S1);
OpenMesh(argv[2],S2);
string S1NewName=SaveFileName(argv[1]);
string S2NewName=SaveFileName(argv[2]);
if(!NumberOfSamples && !SamplesPerAreaUnit)
{
NumberOfSamples = true;
n_samples_target = 10 * max(S1.fn,S2.fn);// take 10 samples per face
}
// compute face information
tri::UpdateEdges<CMesh>::Set(S1);
tri::UpdateEdges<CMesh>::Set(S2);
// set bounding boxes for S1 and S2
tri::UpdateBounding<CMesh>::Box(S1);
tri::UpdateBounding<CMesh>::Box(S2);
// set Bounding Box.
Box3d bbox, tmp_bbox_M1=S1.bbox, tmp_bbox_M2=S2.bbox;
bbox.Add(S1.bbox);
bbox.Add(S2.bbox);
bbox.Offset(bbox.Diag()*0.02);
S1.bbox = bbox;
S2.bbox = bbox;
// initialize time info.
int t0=clock();
Sampling<CMesh> ForwardSampling(S1,S2);
Sampling<CMesh> BackwardSampling(S2,S1);
// print mesh info.
printf("Mesh info:\n");
printf(" M1: '%s'\n\t%vertices %7i\n\tfaces %7i\n\tarea %12.4f\n", argv[1], S1.vn, S1.fn, ForwardSampling.GetArea());
printf("\tbbox (%7.4f %7.4f %7.4f)-(%7.4f %7.4f %7.4f)\n", tmp_bbox_M1.min[0], tmp_bbox_M1.min[1], tmp_bbox_M1.min[2], tmp_bbox_M1.max[0], tmp_bbox_M1.max[1], tmp_bbox_M1.max[2]);
printf("\tbbox diagonal %f\n", (float)tmp_bbox_M1.Diag());
printf(" M2: '%s'\n\t%vertices %7i\n\tfaces %7i\n\tarea %12.4f\n", argv[2], S2.vn, S2.fn, BackwardSampling.GetArea());
printf("\tbbox (%7.4f %7.4f %7.4f)-(%7.4f %7.4f %7.4f)\n", tmp_bbox_M2.min[0], tmp_bbox_M2.min[1], tmp_bbox_M2.min[2], tmp_bbox_M2.max[0], tmp_bbox_M2.max[1], tmp_bbox_M2.max[2]);
printf("\tbbox diagonal %f\n", (float)tmp_bbox_M2.Diag());
// Forward distance.
printf("\nForward distance (M1 -> M2):\n");
ForwardSampling.SetFlags(flags);
if(NumberOfSamples)
{
ForwardSampling.SetSamplesTarget(n_samples_target);
n_samples_per_area_unit = ForwardSampling.GetNSamplesPerAreaUnit();
}
else
{
ForwardSampling.SetSamplesPerAreaUnit(n_samples_per_area_unit);
n_samples_target = ForwardSampling.GetNSamplesTarget();
}
printf("target # samples : %u\ntarget # samples/area : %f\n", n_samples_target, n_samples_per_area_unit);
ForwardSampling.Hausdorff();
dist1_max = ForwardSampling.GetDistMax();
printf("\ndistances:\n max : %f (%f wrt bounding box diagonal)\n", (float)dist1_max, (float)dist1_max/bbox.Diag());
printf(" mean : %f\n", ForwardSampling.GetDistMean());
printf(" RMS : %f\n", ForwardSampling.GetDistRMS());
printf("# vertex samples %9d\n", ForwardSampling.GetNVertexSamples());
printf("# edge samples %9d\n", ForwardSampling.GetNEdgeSamples());
printf("# area samples %9d\n", ForwardSampling.GetNAreaSamples());
printf("# total samples %9d\n", ForwardSampling.GetNSamples());
printf("# samples per area unit: %f\n\n", ForwardSampling.GetNSamplesPerAreaUnit());
// Backward distance.
printf("\nBackward distance (M2 -> M1):\n");
BackwardSampling.SetFlags(flags);
if(NumberOfSamples)
{
BackwardSampling.SetSamplesTarget(n_samples_target);
n_samples_per_area_unit = BackwardSampling.GetNSamplesPerAreaUnit();
}
else
{
BackwardSampling.SetSamplesPerAreaUnit(n_samples_per_area_unit);
n_samples_target = BackwardSampling.GetNSamplesTarget();
}
printf("target # samples : %u\ntarget # samples/area : %f\n", n_samples_target, n_samples_per_area_unit);
BackwardSampling.Hausdorff();
dist2_max = BackwardSampling.GetDistMax();
printf("\ndistances:\n max : %f (%f wrt bounding box diagonal)\n", (float)dist2_max, (float)dist2_max/bbox.Diag());
printf(" mean : %f\n", BackwardSampling.GetDistMean());
printf(" RMS : %f\n", BackwardSampling.GetDistRMS());
printf("# vertex samples %9d\n", BackwardSampling.GetNVertexSamples());
printf("# edge samples %9d\n", BackwardSampling.GetNEdgeSamples());
printf("# area samples %9d\n", BackwardSampling.GetNAreaSamples());
printf("# total samples %9d\n", BackwardSampling.GetNSamples());
printf("# samples per area unit: %f\n\n", BackwardSampling.GetNSamplesPerAreaUnit());
// compute time info.
elapsed_time = clock() - t0;
int n_total_sample=ForwardSampling.GetNSamples()+BackwardSampling.GetNSamples();
double mesh_dist_max = max(dist1_max , dist2_max);
printf("\nHausdorff distance: %f (%f wrt bounding box diagonal)\n",(float)mesh_dist_max,(float)mesh_dist_max/bbox.Diag());
printf(" Computation time : %d ms\n",(int)(1000.0*elapsed_time/CLOCKS_PER_SEC));
printf(" # samples/second : %f\n\n", (float)n_total_sample/((float)elapsed_time/CLOCKS_PER_SEC));
// save error files.
if(flags & SamplingFlags::SAVE_ERROR)
{
vcg::tri::io::PlyInfo p;
p.mask|=vcg::ply::PLYMask::PM_VERTCOLOR|vcg::ply::PLYMask::PM_VERTQUALITY;
if(ColorMax!=0 || ColorMin != 0){
vcg::tri::UpdateColor<CMesh>::VertexQuality(S1,ColorMin,ColorMax);
vcg::tri::UpdateColor<CMesh>::VertexQuality(S2,ColorMin,ColorMax);
}
tri::io::ExporterPLY<CMesh>::Save( S1,S1NewName.c_str(),true,p);
tri::io::ExporterPLY<CMesh>::Save( S2,S2NewName.c_str(),true,p);
}
return 0;
}
// -----------------------------------------------------------------------------------------------