1488 lines
57 KiB
C++
1488 lines
57 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004-2016 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
|
||
#ifndef __VCGLIB__SMOOTH
|
||
#define __VCGLIB__SMOOTH
|
||
|
||
#include <vcg/space/ray3.h>
|
||
#include <vcg/complex/algorithms/update/normal.h>
|
||
#include <vcg/complex/algorithms/update/halfedge_topology.h>
|
||
#include <vcg/complex/algorithms/closest.h>
|
||
#include <vcg/space/index/kdtree/kdtree.h>
|
||
|
||
namespace vcg
|
||
{
|
||
namespace tri
|
||
{
|
||
///
|
||
/** \addtogroup trimesh */
|
||
/*@{*/
|
||
/// Class of static functions to smooth and fair meshes and their attributes.
|
||
|
||
template <class SmoothMeshType>
|
||
class Smooth
|
||
{
|
||
|
||
public:
|
||
typedef SmoothMeshType MeshType;
|
||
typedef typename MeshType::VertexType VertexType;
|
||
typedef typename MeshType::VertexType::CoordType CoordType;
|
||
typedef typename MeshType::VertexPointer VertexPointer;
|
||
typedef typename MeshType::VertexIterator VertexIterator;
|
||
typedef typename MeshType::ScalarType ScalarType;
|
||
typedef typename MeshType::FaceType FaceType;
|
||
typedef typename MeshType::FacePointer FacePointer;
|
||
typedef typename MeshType::FaceIterator FaceIterator;
|
||
typedef typename MeshType::FaceContainer FaceContainer;
|
||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||
typedef typename vcg::face::VFIterator<FaceType> VFLocalIterator;
|
||
|
||
class ScaleLaplacianInfo
|
||
{
|
||
public:
|
||
CoordType PntSum;
|
||
ScalarType LenSum;
|
||
};
|
||
|
||
// This is precisely what curvature flow does.
|
||
// Curvature flow smoothes the surface by moving along the surface
|
||
// normal n with a speed equal to the mean curvature
|
||
void VertexCoordLaplacianCurvatureFlow(MeshType & /*m*/, int /*step*/, ScalarType /*delta*/)
|
||
{
|
||
}
|
||
|
||
// Another Laplacian smoothing variant,
|
||
// here we sum the baricenter of the faces incidents on each vertex weighting them with the angle
|
||
|
||
static void VertexCoordLaplacianAngleWeighted(MeshType &m, int step, ScalarType delta)
|
||
{
|
||
ScaleLaplacianInfo lpz;
|
||
lpz.PntSum = CoordType(0, 0, 0);
|
||
lpz.LenSum = 0;
|
||
SimpleTempData<typename MeshType::VertContainer, ScaleLaplacianInfo> TD(m.vert, lpz);
|
||
FaceIterator fi;
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
TD[*vi] = lpz;
|
||
ScalarType a[3];
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
{
|
||
CoordType mp = ((*fi).V(0)->P() + (*fi).V(1)->P() + (*fi).V(2)->P()) / 3.0;
|
||
CoordType e0 = ((*fi).V(0)->P() - (*fi).V(1)->P()).Normalize();
|
||
CoordType e1 = ((*fi).V(1)->P() - (*fi).V(2)->P()).Normalize();
|
||
CoordType e2 = ((*fi).V(2)->P() - (*fi).V(0)->P()).Normalize();
|
||
|
||
a[0] = AngleN(-e0, e2);
|
||
a[1] = AngleN(-e1, e0);
|
||
a[2] = AngleN(-e2, e1);
|
||
//assert(fabs(M_PI -a[0] -a[1] -a[2])<0.0000001);
|
||
|
||
for (int j = 0; j < 3; ++j)
|
||
{
|
||
CoordType dir = (mp - (*fi).V(j)->P()).Normalize();
|
||
TD[(*fi).V(j)].PntSum += dir * a[j];
|
||
TD[(*fi).V(j)].LenSum += a[j]; // well, it should be named angleSum
|
||
}
|
||
}
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].LenSum > 0)
|
||
(*vi).P() = (*vi).P() + (TD[*vi].PntSum / TD[*vi].LenSum) * delta;
|
||
}
|
||
};
|
||
|
||
// Scale dependent laplacian smoothing [Fujiwara 95]
|
||
// as described in
|
||
// Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
|
||
// Mathieu Desbrun, Mark Meyer, Peter Schroeder, Alan H. Barr
|
||
// SIGGRAPH 99
|
||
// REQUIREMENTS: Border Flags.
|
||
//
|
||
// Note the delta parameter is in a absolute unit
|
||
// to get stability it should be a small percentage of the shortest edge.
|
||
|
||
static void VertexCoordScaleDependentLaplacian_Fujiwara(MeshType &m, int step, ScalarType delta, bool SmoothSelected = false)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer, ScaleLaplacianInfo> TD(m.vert);
|
||
ScaleLaplacianInfo lpz;
|
||
lpz.PntSum = CoordType(0, 0, 0);
|
||
lpz.LenSum = 0;
|
||
FaceIterator fi;
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
TD[*vi] = lpz;
|
||
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
CoordType edge = (*fi).V1(j)->P() - (*fi).V(j)->P();
|
||
ScalarType len = Norm(edge);
|
||
edge /= len;
|
||
TD[(*fi).V(j)].PntSum += edge;
|
||
TD[(*fi).V1(j)].PntSum -= edge;
|
||
TD[(*fi).V(j)].LenSum += len;
|
||
TD[(*fi).V1(j)].LenSum += len;
|
||
}
|
||
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
// se l'edge j e' di bordo si riazzera tutto e si riparte
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].PntSum = CoordType(0, 0, 0);
|
||
TD[(*fi).V1(j)].PntSum = CoordType(0, 0, 0);
|
||
TD[(*fi).V(j)].LenSum = 0;
|
||
TD[(*fi).V1(j)].LenSum = 0;
|
||
}
|
||
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
CoordType edge = (*fi).V1(j)->P() - (*fi).V(j)->P();
|
||
ScalarType len = Norm(edge);
|
||
edge /= len;
|
||
TD[(*fi).V(j)].PntSum += edge;
|
||
TD[(*fi).V1(j)].PntSum -= edge;
|
||
TD[(*fi).V(j)].LenSum += len;
|
||
TD[(*fi).V1(j)].LenSum += len;
|
||
}
|
||
// The fundamental part:
|
||
// We move the new point of a quantity
|
||
//
|
||
// L(M) = 1/Sum(edgelen) * Sum(Normalized edges)
|
||
//
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].LenSum > 0)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
(*vi).P() = (*vi).P() + (TD[*vi].PntSum / TD[*vi].LenSum) * delta;
|
||
}
|
||
}
|
||
};
|
||
|
||
class LaplacianInfo
|
||
{
|
||
public:
|
||
LaplacianInfo(const CoordType &_p, const int _n) : sum(_p), cnt(_n) {}
|
||
LaplacianInfo() {}
|
||
CoordType sum;
|
||
ScalarType cnt;
|
||
};
|
||
|
||
// Classical Laplacian Smoothing. Each vertex can be moved onto the average of the adjacent vertices.
|
||
// Can smooth only the selected vertices and weight the smoothing according to the quality
|
||
// In the latter case 0 means that the vertex is not moved and 1 means that the vertex is moved onto the computed position.
|
||
//
|
||
// From the Taubin definition "A signal proc approach to fair surface design"
|
||
// We define the discrete Laplacian of a discrete surface signal by weighted averages over the neighborhoods
|
||
// \delta xi = \Sum wij (xj - xi) ;
|
||
// where xj are the adjacent vertices of xi and wij is usually 1/n_adj
|
||
//
|
||
// This function simply accumulate over a TempData all the positions of the ajacent vertices
|
||
//
|
||
static void AccumulateLaplacianInfo(MeshType &m, SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> &TD, bool cotangentFlag = false)
|
||
{
|
||
float weight = 1.0f;
|
||
|
||
//if we are applying to a tetrahedral mesh:
|
||
ForEachTetra(m, [&](MeshType::TetraType &t) {
|
||
for (int i = 0; i < 4; ++i)
|
||
if (!t.IsB(i))
|
||
{
|
||
VertexPointer v0, v1, v2;
|
||
v0 = t.V(Tetra::VofF(i, 0));
|
||
v1 = t.V(Tetra::VofF(i, 1));
|
||
v2 = t.V(Tetra::VofF(i, 2));
|
||
|
||
TD[v0].sum += v1->P() * weight;
|
||
TD[v0].sum += v2->P() * weight;
|
||
TD[v0].cnt += 2 * weight;
|
||
|
||
TD[v1].sum += v0->P() * weight;
|
||
TD[v1].sum += v2->P() * weight;
|
||
TD[v1].cnt += 2 * weight;
|
||
|
||
TD[v2].sum += v0->P() * weight;
|
||
TD[v2].sum += v1->P() * weight;
|
||
TD[v2].cnt += 2 * weight;
|
||
}
|
||
});
|
||
|
||
ForEachTetra(m, [&](MeshType::TetraType &t) {
|
||
for (int i = 0; i < 4; ++i)
|
||
if (t.IsB(i))
|
||
{
|
||
VertexPointer v0, v1, v2;
|
||
v0 = t.V(Tetra::VofF(i, 0));
|
||
v1 = t.V(Tetra::VofF(i, 1));
|
||
v2 = t.V(Tetra::VofF(i, 2));
|
||
|
||
TD[v0].sum = v0->P();
|
||
TD[v1].sum = v1->P();
|
||
TD[v2].sum = v2->P();
|
||
|
||
TD[v0].cnt = 1;
|
||
TD[v1].cnt = 1;
|
||
TD[v2].cnt = 1;
|
||
}
|
||
});
|
||
|
||
ForEachTetra(m, [&](MeshType::TetraType &t) {
|
||
for (int i = 0; i < 4; ++i)
|
||
if (t.IsB(i))
|
||
{
|
||
VertexPointer v0, v1, v2;
|
||
v0 = t.V(Tetra::VofF(i, 0));
|
||
v1 = t.V(Tetra::VofF(i, 1));
|
||
v2 = t.V(Tetra::VofF(i, 2));
|
||
|
||
TD[v0].sum += v1->P() * weight;
|
||
TD[v0].sum += v2->P() * weight;
|
||
TD[v0].cnt += 2 * weight;
|
||
|
||
TD[v1].sum += v0->P() * weight;
|
||
TD[v1].sum += v2->P() * weight;
|
||
TD[v1].cnt += 2 * weight;
|
||
|
||
TD[v2].sum += v0->P() * weight;
|
||
TD[v2].sum += v1->P() * weight;
|
||
TD[v2].cnt += 2 * weight;
|
||
}
|
||
});
|
||
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
if (cotangentFlag)
|
||
{
|
||
float angle = Angle(fi->P1(j) - fi->P2(j), fi->P0(j) - fi->P2(j));
|
||
weight = tan((M_PI * 0.5) - angle);
|
||
}
|
||
|
||
TD[(*fi).V0(j)].sum += (*fi).P1(j) * weight;
|
||
TD[(*fi).V1(j)].sum += (*fi).P0(j) * weight;
|
||
TD[(*fi).V0(j)].cnt += weight;
|
||
TD[(*fi).V1(j)].cnt += weight;
|
||
}
|
||
}
|
||
// si azzaera i dati per i vertici di bordo
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V0(j)].sum = (*fi).P0(j);
|
||
TD[(*fi).V1(j)].sum = (*fi).P1(j);
|
||
TD[(*fi).V0(j)].cnt = 1;
|
||
TD[(*fi).V1(j)].cnt = 1;
|
||
}
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->P();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void VertexCoordLaplacian(MeshType &m, int step, bool SmoothSelected = false, bool cotangentWeight = false, vcg::CallBackPos *cb = 0)
|
||
{
|
||
LaplacianInfo lpz(CoordType(0, 0, 0), 0);
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert, lpz);
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
if (cb)
|
||
cb(100 * i / step, "Classic Laplacian Smoothing");
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m, TD, cotangentWeight);
|
||
for (auto vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
(*vi).P() = ((*vi).P() + TD[*vi].sum) / (TD[*vi].cnt + 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Same of above but moves only the vertices that do not change FaceOrientation more that the given threshold
|
||
static void VertexCoordPlanarLaplacian(MeshType &m, int step, float AngleThrRad = math::ToRad(1.0), bool SmoothSelected = false, vcg::CallBackPos *cb = 0)
|
||
{
|
||
LaplacianInfo lpz(CoordType(0, 0, 0), 0);
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert, lpz);
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
if (cb)
|
||
cb(100 * i / step, "Planar Laplacian Smoothing");
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m, TD);
|
||
// First normalize the AccumulateLaplacianInfo
|
||
for (auto vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
TD[*vi].sum = ((*vi).P() + TD[*vi].sum) / (TD[*vi].cnt + 1);
|
||
}
|
||
|
||
for (auto fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
if (!(*fi).IsD())
|
||
{
|
||
for (int j = 0; j < 3; ++j)
|
||
{
|
||
if (Angle(Normal(TD[(*fi).V0(j)].sum, (*fi).P1(j), (*fi).P2(j)),
|
||
Normal((*fi).P0(j), (*fi).P1(j), (*fi).P2(j))) > AngleThrRad)
|
||
TD[(*fi).V0(j)].sum = (*fi).P0(j);
|
||
}
|
||
}
|
||
}
|
||
for (auto fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
if (!(*fi).IsD())
|
||
{
|
||
for (int j = 0; j < 3; ++j)
|
||
{
|
||
if (Angle(Normal(TD[(*fi).V0(j)].sum, TD[(*fi).V1(j)].sum, (*fi).P2(j)),
|
||
Normal((*fi).P0(j), (*fi).P1(j), (*fi).P2(j))) > AngleThrRad)
|
||
{
|
||
TD[(*fi).V0(j)].sum = (*fi).P0(j);
|
||
TD[(*fi).V1(j)].sum = (*fi).P1(j);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (auto vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
(*vi).P() = TD[*vi].sum;
|
||
} // end step
|
||
}
|
||
|
||
static void VertexCoordLaplacianBlend(MeshType &m, int step, float alpha, bool SmoothSelected = false)
|
||
{
|
||
VertexIterator vi;
|
||
LaplacianInfo lpz(CoordType(0, 0, 0), 0);
|
||
assert(alpha <= 1.0);
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert);
|
||
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m, TD);
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
CoordType Delta = TD[*vi].sum / TD[*vi].cnt - (*vi).P();
|
||
(*vi).P() = (*vi).P() + Delta * alpha;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* a couple of notes about the lambda mu values
|
||
We assume that 0 < lambda , and mu is a negative scale factor such that mu < - lambda.
|
||
Holds mu+lambda < 0 (e.g in absolute value mu is greater)
|
||
|
||
let kpb be the pass-band frequency, taubin says that:
|
||
kpb = 1/lambda + 1/mu >0
|
||
|
||
Values of kpb from 0.01 to 0.1 produce good results according to the original paper.
|
||
|
||
kpb * mu - mu/lambda = 1
|
||
mu = 1/(kpb-1/lambda )
|
||
|
||
So if
|
||
* lambda == 0.5, kpb==0.1 -> mu = 1/(0.1 - 2) = -0.526
|
||
* lambda == 0.5, kpb==0.01 -> mu = 1/(0.01 - 2) = -0.502
|
||
*/
|
||
|
||
static void VertexCoordTaubin(MeshType &m, int step, float lambda, float mu, bool SmoothSelected = false, vcg::CallBackPos *cb = 0)
|
||
{
|
||
LaplacianInfo lpz(CoordType(0, 0, 0), 0);
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert, lpz);
|
||
VertexIterator vi;
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
if (cb)
|
||
cb(100 * i / step, "Taubin Smoothing");
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m, TD);
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
CoordType Delta = TD[*vi].sum / TD[*vi].cnt - (*vi).P();
|
||
(*vi).P() = (*vi).P() + Delta * lambda;
|
||
}
|
||
}
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m, TD);
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
CoordType Delta = TD[*vi].sum / TD[*vi].cnt - (*vi).P();
|
||
(*vi).P() = (*vi).P() + Delta * mu;
|
||
}
|
||
}
|
||
} // end for step
|
||
}
|
||
|
||
static void VertexQualityTaubin(MeshType &m, int step, float lambda, float mu, bool SmoothSelected = false, vcg::CallBackPos *cb = 0)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer, ScalarType> OldQ(m.vert, 0);
|
||
|
||
VertexIterator vi;
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
for (size_t i = 0; i < m.vert.size(); i++)
|
||
OldQ[i] = m.vert[i].Q();
|
||
|
||
if (cb)
|
||
cb(100 * i / step, "Taubin Smoothing");
|
||
|
||
VertexQualityLaplacian(m, 1, SmoothSelected);
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
ScalarType Delta = (*vi).Q() - OldQ[(*vi)];
|
||
(*vi).Q() = OldQ[(*vi)] + Delta * lambda;
|
||
}
|
||
}
|
||
|
||
for (size_t i = 0; i < m.vert.size(); i++)
|
||
OldQ[i] = m.vert[i].Q();
|
||
VertexQualityLaplacian(m, 1, SmoothSelected);
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
ScalarType Delta = m.vert[i].Q() - OldQ[(*vi)];
|
||
(*vi).Q() = OldQ[(*vi)] + Delta * mu;
|
||
}
|
||
}
|
||
} // end for step
|
||
}
|
||
|
||
static void VertexCoordLaplacianQuality(MeshType &m, int step, bool SmoothSelected = false)
|
||
{
|
||
LaplacianInfo lpz;
|
||
lpz.sum = CoordType(0, 0, 0);
|
||
lpz.cnt = 1;
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert, lpz);
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
float q = (*vi).Q();
|
||
(*vi).P() = (*vi).P() * q + (TD[*vi].sum / TD[*vi].cnt) * (1.0 - q);
|
||
}
|
||
} // end for
|
||
};
|
||
|
||
/*
|
||
Improved Laplacian Smoothing of Noisy Surface Meshes
|
||
J. Vollmer, R. Mencl, and H. M<>ller
|
||
EUROGRAPHICS Volume 18 (1999), Number 3
|
||
*/
|
||
|
||
class HCSmoothInfo
|
||
{
|
||
public:
|
||
CoordType dif;
|
||
CoordType sum;
|
||
int cnt;
|
||
};
|
||
|
||
static void VertexCoordLaplacianHC(MeshType &m, int step, bool SmoothSelected = false)
|
||
{
|
||
ScalarType beta = 0.5;
|
||
HCSmoothInfo lpz;
|
||
lpz.sum = CoordType(0, 0, 0);
|
||
lpz.dif = CoordType(0, 0, 0);
|
||
lpz.cnt = 0;
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer, HCSmoothInfo> TD(m.vert, lpz);
|
||
// First Loop compute the laplacian
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
{
|
||
for (int j = 0; j < 3; ++j)
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->P();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
// se l'edge j e' di bordo si deve sommare due volte
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->P();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
}
|
||
}
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD())
|
||
TD[*vi].sum /= (float)TD[*vi].cnt;
|
||
|
||
// Second Loop compute average difference
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
{
|
||
for (int j = 0; j < 3; ++j)
|
||
{
|
||
TD[(*fi).V(j)].dif += TD[(*fi).V1(j)].sum - (*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].dif += TD[(*fi).V(j)].sum - (*fi).V(j)->P();
|
||
// se l'edge j e' di bordo si deve sommare due volte
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].dif += TD[(*fi).V1(j)].sum - (*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].dif += TD[(*fi).V(j)].sum - (*fi).V(j)->P();
|
||
}
|
||
}
|
||
}
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
TD[*vi].dif /= (float)TD[*vi].cnt;
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
(*vi).P() = TD[*vi].sum - (TD[*vi].sum - (*vi).P()) * beta + (TD[*vi].dif) * (1.f - beta);
|
||
}
|
||
} // end for step
|
||
};
|
||
|
||
// Laplacian smooth of the quality.
|
||
|
||
class ColorSmoothInfo
|
||
{
|
||
public:
|
||
unsigned int r;
|
||
unsigned int g;
|
||
unsigned int b;
|
||
unsigned int a;
|
||
int cnt;
|
||
};
|
||
|
||
static void VertexColorLaplacian(MeshType &m, int step, bool SmoothSelected = false, vcg::CallBackPos *cb = 0)
|
||
{
|
||
ColorSmoothInfo csi;
|
||
csi.r = 0;
|
||
csi.g = 0;
|
||
csi.b = 0;
|
||
csi.cnt = 0;
|
||
SimpleTempData<typename MeshType::VertContainer, ColorSmoothInfo> TD(m.vert, csi);
|
||
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
if (cb)
|
||
cb(100 * i / step, "Vertex Color Laplacian Smoothing");
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
TD[*vi] = csi;
|
||
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].r += (*fi).V1(j)->C()[0];
|
||
TD[(*fi).V(j)].g += (*fi).V1(j)->C()[1];
|
||
TD[(*fi).V(j)].b += (*fi).V1(j)->C()[2];
|
||
TD[(*fi).V(j)].a += (*fi).V1(j)->C()[3];
|
||
|
||
TD[(*fi).V1(j)].r += (*fi).V(j)->C()[0];
|
||
TD[(*fi).V1(j)].g += (*fi).V(j)->C()[1];
|
||
TD[(*fi).V1(j)].b += (*fi).V(j)->C()[2];
|
||
TD[(*fi).V1(j)].a += (*fi).V(j)->C()[3];
|
||
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)] = csi;
|
||
TD[(*fi).V1(j)] = csi;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].r += (*fi).V1(j)->C()[0];
|
||
TD[(*fi).V(j)].g += (*fi).V1(j)->C()[1];
|
||
TD[(*fi).V(j)].b += (*fi).V1(j)->C()[2];
|
||
TD[(*fi).V(j)].a += (*fi).V1(j)->C()[3];
|
||
|
||
TD[(*fi).V1(j)].r += (*fi).V(j)->C()[0];
|
||
TD[(*fi).V1(j)].g += (*fi).V(j)->C()[1];
|
||
TD[(*fi).V1(j)].b += (*fi).V(j)->C()[2];
|
||
TD[(*fi).V1(j)].a += (*fi).V(j)->C()[3];
|
||
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
{
|
||
(*vi).C()[0] = (unsigned int)ceil((double)(TD[*vi].r / TD[*vi].cnt));
|
||
(*vi).C()[1] = (unsigned int)ceil((double)(TD[*vi].g / TD[*vi].cnt));
|
||
(*vi).C()[2] = (unsigned int)ceil((double)(TD[*vi].b / TD[*vi].cnt));
|
||
(*vi).C()[3] = (unsigned int)ceil((double)(TD[*vi].a / TD[*vi].cnt));
|
||
}
|
||
} // end for step
|
||
};
|
||
|
||
static void FaceColorLaplacian(MeshType &m, int step, bool SmoothSelected = false, vcg::CallBackPos *cb = 0)
|
||
{
|
||
ColorSmoothInfo csi;
|
||
csi.r = 0;
|
||
csi.g = 0;
|
||
csi.b = 0;
|
||
csi.cnt = 0;
|
||
SimpleTempData<typename MeshType::FaceContainer, ColorSmoothInfo> TD(m.face, csi);
|
||
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
if (cb)
|
||
cb(100 * i / step, "Face Color Laplacian Smoothing");
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
TD[*fi] = csi;
|
||
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
TD[*fi].r += (*fi).FFp(j)->C()[0];
|
||
TD[*fi].g += (*fi).FFp(j)->C()[1];
|
||
TD[*fi].b += (*fi).FFp(j)->C()[2];
|
||
TD[*fi].a += (*fi).FFp(j)->C()[3];
|
||
++TD[*fi].cnt;
|
||
}
|
||
}
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD() && TD[*fi].cnt > 0)
|
||
if (!SmoothSelected || (*fi).IsS())
|
||
{
|
||
(*fi).C()[0] = (unsigned int)ceil((float)(TD[*fi].r / TD[*fi].cnt));
|
||
(*fi).C()[1] = (unsigned int)ceil((float)(TD[*fi].g / TD[*fi].cnt));
|
||
(*fi).C()[2] = (unsigned int)ceil((float)(TD[*fi].b / TD[*fi].cnt));
|
||
(*fi).C()[3] = (unsigned int)ceil((float)(TD[*fi].a / TD[*fi].cnt));
|
||
}
|
||
} // end for step
|
||
};
|
||
|
||
// Laplacian smooth of the quality.
|
||
|
||
class QualitySmoothInfo
|
||
{
|
||
public:
|
||
ScalarType sum;
|
||
int cnt;
|
||
};
|
||
|
||
static void PointCloudQualityAverage(MeshType &m, int neighbourSize = 8, int iter = 1)
|
||
{
|
||
tri::RequireCompactness(m);
|
||
VertexConstDataWrapper<MeshType> ww(m);
|
||
KdTree<ScalarType> kt(ww);
|
||
typename KdTree<ScalarType>::PriorityQueue pq;
|
||
for (int k = 0; k < iter; ++k)
|
||
{
|
||
std::vector<ScalarType> newQVec(m.vn);
|
||
for (int i = 0; i < m.vn; ++i)
|
||
{
|
||
kt.doQueryK(m.vert[i].P(), neighbourSize, pq);
|
||
float qAvg = 0;
|
||
for (int j = 0; j < pq.getNofElements(); ++j)
|
||
qAvg += m.vert[pq.getIndex(j)].Q();
|
||
newQVec[i] = qAvg / float(pq.getNofElements());
|
||
}
|
||
|
||
for (int i = 0; i < m.vn; ++i)
|
||
m.vert[i].Q() = newQVec[i];
|
||
}
|
||
}
|
||
|
||
static void PointCloudQualityMedian(MeshType &m, int medianSize = 8)
|
||
{
|
||
tri::RequireCompactness(m);
|
||
VertexConstDataWrapper<MeshType> ww(m);
|
||
KdTree<ScalarType> kt(ww);
|
||
typename KdTree<ScalarType>::PriorityQueue pq;
|
||
std::vector<ScalarType> newQVec(m.vn);
|
||
for (int i = 0; i < m.vn; ++i)
|
||
{
|
||
kt.doQueryK(m.vert[i].P(), medianSize, pq);
|
||
std::vector<ScalarType> qVec(pq.getNofElements());
|
||
for (int j = 0; j < pq.getNofElements(); ++j)
|
||
qVec[j] = m.vert[pq.getIndex(j)].Q();
|
||
std::sort(qVec.begin(), qVec.end());
|
||
newQVec[i] = qVec[qVec.size() / 2];
|
||
}
|
||
|
||
for (int i = 0; i < m.vn; ++i)
|
||
m.vert[i].Q() = newQVec[i];
|
||
}
|
||
|
||
static void VertexQualityLaplacian(MeshType &m, int step = 1, bool SmoothSelected = false)
|
||
{
|
||
QualitySmoothInfo lpz;
|
||
lpz.sum = 0;
|
||
lpz.cnt = 0;
|
||
SimpleTempData<typename MeshType::VertContainer, QualitySmoothInfo> TD(m.vert, lpz);
|
||
//TD.Start(lpz);
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
TD[*vi] = lpz;
|
||
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < (*fi).VN(); ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->Q();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->Q();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < (*fi).VN(); ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)] = lpz;
|
||
TD[(*fi).V1(j)] = lpz;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < (*fi).VN(); ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->Q();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->Q();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
//VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
(*vi).Q() = TD[*vi].sum / TD[*vi].cnt;
|
||
}
|
||
|
||
//TD.Stop();
|
||
};
|
||
|
||
static void VertexNormalLaplacian(MeshType &m, int step, bool SmoothSelected = false)
|
||
{
|
||
LaplacianInfo lpz;
|
||
lpz.sum = CoordType(0, 0, 0);
|
||
lpz.cnt = 0;
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert, lpz);
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
TD[*vi] = lpz;
|
||
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->N();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->N();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)] = lpz;
|
||
TD[(*fi).V1(j)] = lpz;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->N();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->N();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
//VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
if (!SmoothSelected || (*vi).IsS())
|
||
(*vi).N() = TD[*vi].sum / TD[*vi].cnt;
|
||
}
|
||
};
|
||
|
||
// Smooth solo lungo la direzione di vista
|
||
// alpha e' compreso fra 0(no smoot) e 1 (tutto smoot)
|
||
// Nota che se smootare il bordo puo far fare bandierine.
|
||
static void VertexCoordViewDepth(MeshType &m,
|
||
const CoordType &viewpoint,
|
||
const ScalarType alpha,
|
||
int step, bool SmoothBorder = false)
|
||
{
|
||
LaplacianInfo lpz;
|
||
lpz.sum = CoordType(0, 0, 0);
|
||
lpz.cnt = 0;
|
||
SimpleTempData<typename MeshType::VertContainer, LaplacianInfo> TD(m.vert, lpz);
|
||
for (int i = 0; i < step; ++i)
|
||
{
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
TD[*vi] = lpz;
|
||
|
||
FaceIterator fi;
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if (!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->cP();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->cP();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)] = lpz;
|
||
TD[(*fi).V1(j)] = lpz;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
if (SmoothBorder)
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
for (int j = 0; j < 3; ++j)
|
||
if ((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum += (*fi).V1(j)->cP();
|
||
TD[(*fi).V1(j)].sum += (*fi).V(j)->cP();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if (!(*vi).IsD() && TD[*vi].cnt > 0)
|
||
{
|
||
CoordType np = TD[*vi].sum / TD[*vi].cnt;
|
||
CoordType d = (*vi).cP() - viewpoint;
|
||
d.Normalize();
|
||
ScalarType s = d.dot(np - (*vi).cP());
|
||
(*vi).P() += d * (s * alpha);
|
||
}
|
||
}
|
||
}
|
||
|
||
/****************************************************************************************************************/
|
||
/****************************************************************************************************************/
|
||
// Paso Double Smoothing
|
||
// The proposed
|
||
// approach is a two step method where in the first step the face normals
|
||
// are adjusted and then, in a second phase, the vertex positions are updated.
|
||
// Ref:
|
||
// A. Belyaev and Y. Ohtake, A Comparison of Mesh Smoothing Methods, Proc. Israel-Korea Bi-Nat"l Conf. Geometric Modeling and Computer Graphics, pp. 83-87, 2003.
|
||
|
||
/****************************************************************************************************************/
|
||
/****************************************************************************************************************/
|
||
// Classi di info
|
||
|
||
class PDVertInfo
|
||
{
|
||
public:
|
||
CoordType np;
|
||
};
|
||
|
||
class PDFaceInfo
|
||
{
|
||
public:
|
||
PDFaceInfo() {}
|
||
PDFaceInfo(const CoordType &_m) : m(_m) {}
|
||
CoordType m;
|
||
};
|
||
/***************************************************************************/
|
||
// Paso Doble Step 1 compute the smoothed normals
|
||
/***************************************************************************/
|
||
// Requirements:
|
||
// VF Topology
|
||
// Normalized Face Normals
|
||
//
|
||
// This is the Normal Smoothing approach of Shen and Berner
|
||
// Fuzzy Vector Median-Based Surface Smoothing TVCG 2004
|
||
|
||
void FaceNormalFuzzyVectorSB(MeshType &m,
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> &TD,
|
||
ScalarType sigma)
|
||
{
|
||
int i;
|
||
|
||
FaceIterator fi;
|
||
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
CoordType bc = (*fi).Barycenter();
|
||
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
|
||
for (i = 0; i < 3; ++i)
|
||
{
|
||
vcg::face::VFIterator<FaceType> ep(&*fi, i);
|
||
while (!ep.End())
|
||
{
|
||
ep.f->ClearV();
|
||
++ep;
|
||
}
|
||
}
|
||
|
||
// 1) Effectively average the normals weighting them with
|
||
(*fi).SetV();
|
||
CoordType mm = CoordType(0, 0, 0);
|
||
for (i = 0; i < 3; ++i)
|
||
{
|
||
vcg::face::VFIterator<FaceType> ep(&*fi, i);
|
||
while (!ep.End())
|
||
{
|
||
if (!(*ep.f).IsV())
|
||
{
|
||
if (sigma > 0)
|
||
{
|
||
ScalarType dd = SquaredDistance(ep.f->Barycenter(), bc);
|
||
ScalarType ang = AngleN(ep.f->N(), (*fi).N());
|
||
mm += ep.f->N() * exp((-sigma) * ang * ang / dd);
|
||
}
|
||
else
|
||
mm += ep.f->N();
|
||
(*ep.f).SetV();
|
||
}
|
||
++ep;
|
||
}
|
||
}
|
||
mm.Normalize();
|
||
TD[*fi].m = mm;
|
||
}
|
||
}
|
||
|
||
// Replace the normal of the face with the average of normals of the vertex adijacent faces.
|
||
// Normals are weighted with face area.
|
||
// It assumes that:
|
||
// VF adjacency is present.
|
||
|
||
static void FaceNormalLaplacianVF(MeshType &m)
|
||
{
|
||
tri::RequireVFAdjacency(m);
|
||
PDFaceInfo lpzf(CoordType(0, 0, 0));
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face, lpzf);
|
||
|
||
tri::UpdateNormal<MeshType>::NormalizePerFaceByArea(m);
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
{
|
||
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
|
||
for (int i = 0; i < 3; ++i)
|
||
{
|
||
VFLocalIterator ep(&*fi, i);
|
||
for (; !ep.End(); ++ep)
|
||
ep.f->ClearV();
|
||
}
|
||
|
||
// 2) Effectively average the normals
|
||
CoordType normalSum = (*fi).N();
|
||
|
||
for (int i = 0; i < 3; ++i)
|
||
{
|
||
VFLocalIterator ep(&*fi, i);
|
||
for (; !ep.End(); ++ep)
|
||
{
|
||
if (!(*ep.f).IsV())
|
||
{
|
||
normalSum += ep.f->N();
|
||
(*ep.f).SetV();
|
||
}
|
||
}
|
||
}
|
||
normalSum.Normalize();
|
||
TDF[*fi].m = normalSum;
|
||
}
|
||
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
(*fi).N() = TDF[*fi].m;
|
||
|
||
tri::UpdateNormal<MeshType>::NormalizePerFace(m);
|
||
}
|
||
|
||
// Replace the normal of the face with the average of normals of the face adijacent faces.
|
||
// Normals are weighted with face area.
|
||
// It assumes that:
|
||
// Normals are normalized:
|
||
// FF adjacency is present.
|
||
|
||
static void FaceNormalLaplacianFF(MeshType &m, int step = 1, bool SmoothSelected = false)
|
||
{
|
||
PDFaceInfo lpzf(CoordType(0, 0, 0));
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face, lpzf);
|
||
tri::RequireFFAdjacency(m);
|
||
|
||
FaceIterator fi;
|
||
tri::UpdateNormal<MeshType>::NormalizePerFaceByArea(m);
|
||
for (int iStep = 0; iStep < step; ++iStep)
|
||
{
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!(*fi).IsD())
|
||
{
|
||
CoordType normalSum = (*fi).N();
|
||
|
||
for (int i = 0; i < 3; ++i)
|
||
normalSum += (*fi).FFp(i)->N();
|
||
|
||
TDF[*fi].m = normalSum;
|
||
}
|
||
for (fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
if (!SmoothSelected || (*fi).IsS())
|
||
(*fi).N() = TDF[*fi].m;
|
||
|
||
tri::UpdateNormal<MeshType>::NormalizePerFace(m);
|
||
}
|
||
}
|
||
|
||
/***************************************************************************/
|
||
// Paso Doble Step 1 compute the smoothed normals
|
||
/***************************************************************************/
|
||
// Requirements:
|
||
// VF Topology
|
||
// Normalized Face Normals
|
||
//
|
||
// This is the Normal Smoothing approach based on a angle thresholded weighting
|
||
// sigma is in the 0 .. 1 range, it represent the cosine of a threshold angle.
|
||
// sigma == 0 All the normals are averaged
|
||
// sigma == 1 Nothing is averaged.
|
||
// Only within the specified range are averaged toghether. The averagin is weighted with the
|
||
|
||
static void FaceNormalAngleThreshold(MeshType &m,
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> &TD,
|
||
ScalarType sigma)
|
||
{
|
||
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
{
|
||
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
|
||
for (int i = 0; i < 3; ++i)
|
||
{
|
||
VFLocalIterator ep(&*fi, i);
|
||
for (; !ep.End(); ++ep)
|
||
ep.f->ClearV();
|
||
}
|
||
|
||
// 1) Effectively average the normals weighting them with the squared difference of the angle similarity
|
||
// sigma is the cosine of a threshold angle. sigma \in 0..1
|
||
// sigma == 0 All the normals are averaged
|
||
// sigma == 1 Nothing is averaged.
|
||
// The averaging is weighted with the difference between normals. more similar the normal more important they are.
|
||
|
||
CoordType normalSum = CoordType(0, 0, 0);
|
||
for (int i = 0; i < 3; ++i)
|
||
{
|
||
VFLocalIterator ep(&*fi, i);
|
||
for (; !ep.End(); ++ep)
|
||
{
|
||
if (!(*ep.f).IsV())
|
||
{
|
||
ScalarType cosang = ep.f->N().dot((*fi).N());
|
||
// Note that if two faces form an angle larger than 90 deg, their contribution should be very very small.
|
||
// Without this clamping
|
||
cosang = math::Clamp(cosang, ScalarType(0.0001), ScalarType(1.f));
|
||
if (cosang >= sigma)
|
||
{
|
||
ScalarType w = cosang - sigma;
|
||
normalSum += ep.f->N() * (w * w); // similar normals have a cosang very close to 1 so cosang - sigma is maximized
|
||
}
|
||
(*ep.f).SetV();
|
||
}
|
||
}
|
||
}
|
||
normalSum.Normalize();
|
||
TD[*fi].m = normalSum;
|
||
}
|
||
|
||
for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||
(*fi).N() = TD[*fi].m;
|
||
}
|
||
|
||
/****************************************************************************************************************/
|
||
// Restituisce il gradiente dell'area del triangolo nel punto p.
|
||
// Nota che dovrebbe essere sempre un vettore che giace nel piano del triangolo e perpendicolare al lato opposto al vertice p.
|
||
// Ottimizzato con Maple e poi pesantemente a mano.
|
||
|
||
static CoordType TriAreaGradient(CoordType &p, CoordType &p0, CoordType &p1)
|
||
{
|
||
CoordType dd = p1 - p0;
|
||
CoordType d0 = p - p0;
|
||
CoordType d1 = p - p1;
|
||
CoordType grad;
|
||
|
||
ScalarType t16 = d0[1] * d1[2] - d0[2] * d1[1];
|
||
ScalarType t5 = -d0[2] * d1[0] + d0[0] * d1[2];
|
||
ScalarType t4 = -d0[0] * d1[1] + d0[1] * d1[0];
|
||
|
||
ScalarType delta = sqrtf(t4 * t4 + t5 * t5 + t16 * t16);
|
||
|
||
grad[0] = (t5 * (-dd[2]) + t4 * (dd[1])) / delta;
|
||
grad[1] = (t16 * (-dd[2]) + t4 * (-dd[0])) / delta;
|
||
grad[2] = (t16 * (dd[1]) + t5 * (dd[0])) / delta;
|
||
|
||
return grad;
|
||
}
|
||
|
||
template <class ScalarType>
|
||
static CoordType CrossProdGradient(CoordType &p, CoordType &p0, CoordType &p1, CoordType &m)
|
||
{
|
||
CoordType grad;
|
||
CoordType p00 = p0 - p;
|
||
CoordType p01 = p1 - p;
|
||
grad[0] = (-p00[2] + p01[2]) * m[1] + (-p01[1] + p00[1]) * m[2];
|
||
grad[1] = (-p01[2] + p00[2]) * m[0] + (-p00[0] + p01[0]) * m[2];
|
||
grad[2] = (-p00[1] + p01[1]) * m[0] + (-p01[0] + p00[0]) * m[1];
|
||
|
||
return grad;
|
||
}
|
||
|
||
/*
|
||
Deve Calcolare il gradiente di
|
||
E(p) = A(p,p0,p1) (n - m)^2 =
|
||
A(...) (2-2nm) =
|
||
(p0-p)^(p1-p)
|
||
2A - 2A * ------------- m =
|
||
2A
|
||
|
||
2A - 2 (p0-p)^(p1-p) * m
|
||
*/
|
||
|
||
static CoordType FaceErrorGrad(CoordType &p, CoordType &p0, CoordType &p1, CoordType &m)
|
||
{
|
||
return TriAreaGradient(p, p0, p1) * 2.0f - CrossProdGradient(p, p0, p1, m) * 2.0f;
|
||
}
|
||
/***************************************************************************/
|
||
// Paso Doble Step 2 Fitta la mesh a un dato insieme di normali
|
||
/***************************************************************************/
|
||
|
||
static void FitMesh(MeshType &m,
|
||
SimpleTempData<typename MeshType::VertContainer, PDVertInfo> &TDV,
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> &TDF,
|
||
float lambda)
|
||
{
|
||
vcg::face::VFIterator<FaceType> ep;
|
||
VertexIterator vi;
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
CoordType ErrGrad = CoordType(0, 0, 0);
|
||
|
||
ep.f = (*vi).VFp();
|
||
ep.z = (*vi).VFi();
|
||
while (!ep.End())
|
||
{
|
||
ErrGrad += FaceErrorGrad(ep.f->V(ep.z)->P(), ep.f->V1(ep.z)->P(), ep.f->V2(ep.z)->P(), TDF[ep.f].m);
|
||
++ep;
|
||
}
|
||
TDV[*vi].np = (*vi).P() - ErrGrad * (ScalarType)lambda;
|
||
}
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
(*vi).P() = TDV[*vi].np;
|
||
}
|
||
/****************************************************************************************************************/
|
||
|
||
static void FastFitMesh(MeshType &m,
|
||
SimpleTempData<typename MeshType::VertContainer, PDVertInfo> &TDV,
|
||
//SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> &TDF,
|
||
bool OnlySelected = false)
|
||
{
|
||
//vcg::face::Pos<FaceType> ep;
|
||
vcg::face::VFIterator<FaceType> ep;
|
||
VertexIterator vi;
|
||
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
CoordType Sum(0, 0, 0);
|
||
ScalarType cnt = 0;
|
||
VFLocalIterator ep(&*vi);
|
||
for (; !ep.End(); ++ep)
|
||
{
|
||
CoordType bc = Barycenter<FaceType>(*ep.F());
|
||
Sum += ep.F()->N() * (ep.F()->N().dot(bc - (*vi).P()));
|
||
++cnt;
|
||
}
|
||
TDV[*vi].np = (*vi).P() + Sum * (1.0 / cnt);
|
||
}
|
||
|
||
if (OnlySelected)
|
||
{
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
if ((*vi).IsS())
|
||
(*vi).P() = TDV[*vi].np;
|
||
}
|
||
else
|
||
{
|
||
for (vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
(*vi).P() = TDV[*vi].np;
|
||
}
|
||
}
|
||
|
||
// The sigma parameter affect the normal smoothing step
|
||
|
||
static void VertexCoordPasoDoble(MeshType &m, int NormalSmoothStep, typename MeshType::ScalarType Sigma = 0, int FitStep = 50, bool SmoothSelected = false)
|
||
{
|
||
tri::RequireCompactness(m);
|
||
tri::RequireVFAdjacency(m);
|
||
PDVertInfo lpzv;
|
||
lpzv.np = CoordType(0, 0, 0);
|
||
PDFaceInfo lpzf(CoordType(0, 0, 0));
|
||
|
||
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
|
||
SimpleTempData<typename MeshType::VertContainer, PDVertInfo> TDV(m.vert, lpzv);
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face, lpzf);
|
||
|
||
for (int j = 0; j < NormalSmoothStep; ++j)
|
||
FaceNormalAngleThreshold(m, TDF, Sigma);
|
||
|
||
for (int j = 0; j < FitStep; ++j)
|
||
FastFitMesh(m, TDV, SmoothSelected);
|
||
}
|
||
|
||
static void VertexNormalPointCloud(MeshType &m, int neighborNum, int iterNum, KdTree<ScalarType> *tp = 0)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer, CoordType> TD(m.vert, CoordType(0, 0, 0));
|
||
VertexConstDataWrapper<MeshType> ww(m);
|
||
KdTree<ScalarType> *tree = 0;
|
||
if (tp == 0)
|
||
tree = new KdTree<ScalarType>(ww);
|
||
else
|
||
tree = tp;
|
||
typename KdTree<ScalarType>::PriorityQueue nq;
|
||
|
||
// tree->setMaxNofNeighbors(neighborNum);
|
||
for (int ii = 0; ii < iterNum; ++ii)
|
||
{
|
||
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
tree->doQueryK(vi->cP(), neighborNum, nq);
|
||
int neighbours = nq.getNofElements();
|
||
for (int i = 0; i < neighbours; i++)
|
||
{
|
||
int neightId = nq.getIndex(i);
|
||
if (m.vert[neightId].cN() * vi->cN() > 0)
|
||
TD[vi] += m.vert[neightId].cN();
|
||
else
|
||
TD[vi] -= m.vert[neightId].cN();
|
||
}
|
||
}
|
||
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
vi->N() = TD[vi];
|
||
TD[vi] = CoordType(0, 0, 0);
|
||
}
|
||
tri::UpdateNormal<MeshType>::NormalizePerVertex(m);
|
||
}
|
||
|
||
if (tp == 0)
|
||
delete tree;
|
||
}
|
||
|
||
//! Laplacian smoothing with a reprojection on a target surface.
|
||
// grid must be a spatial index that contains all triangular faces of the target mesh gridmesh
|
||
template <class GRID, class MeshTypeTri>
|
||
static void VertexCoordLaplacianReproject(MeshType &m, GRID &grid, MeshTypeTri &gridmesh)
|
||
{
|
||
for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||
{
|
||
if (!(*vi).IsD())
|
||
VertexCoordLaplacianReproject(m, grid, gridmesh, &*vi);
|
||
}
|
||
}
|
||
|
||
template <class GRID, class MeshTypeTri>
|
||
static void VertexCoordLaplacianReproject(MeshType &m, GRID &grid, MeshTypeTri &gridmesh, typename MeshType::VertexType *vp)
|
||
{
|
||
assert(MeshType::HEdgeType::HasHVAdjacency());
|
||
|
||
// compute barycenter
|
||
typedef std::vector<VertexPointer> VertexSet;
|
||
VertexSet verts;
|
||
verts = HalfEdgeTopology<MeshType>::getVertices(vp);
|
||
|
||
typename MeshType::CoordType ct(0, 0, 0);
|
||
for (typename VertexSet::iterator it = verts.begin(); it != verts.end(); ++it)
|
||
{
|
||
ct += (*it)->P();
|
||
}
|
||
ct /= verts.size();
|
||
|
||
// move vertex
|
||
vp->P() = ct;
|
||
|
||
vector<FacePointer> faces2 = HalfEdgeTopology<MeshType>::get_incident_faces(vp);
|
||
|
||
// estimate normal
|
||
typename MeshType::CoordType avgn(0, 0, 0);
|
||
|
||
for (unsigned int i = 0; i < faces2.size(); i++)
|
||
if (faces2[i])
|
||
{
|
||
vector<VertexPointer> vertices = HalfEdgeTopology<MeshType>::getVertices(faces2[i]);
|
||
|
||
assert(vertices.size() == 4);
|
||
|
||
avgn += vcg::Normal<typename MeshType::CoordType>(vertices[0]->cP(), vertices[1]->cP(), vertices[2]->cP());
|
||
avgn += vcg::Normal<typename MeshType::CoordType>(vertices[2]->cP(), vertices[3]->cP(), vertices[0]->cP());
|
||
}
|
||
avgn.Normalize();
|
||
|
||
// reproject
|
||
ScalarType diag = m.bbox.Diag();
|
||
typename MeshType::CoordType raydir = avgn;
|
||
Ray3<typename MeshType::ScalarType> ray;
|
||
|
||
ray.SetOrigin(vp->P());
|
||
ScalarType t;
|
||
typename MeshTypeTri::FaceType *f = 0;
|
||
typename MeshTypeTri::FaceType *fr = 0;
|
||
|
||
vector<typename MeshTypeTri::CoordType> closests;
|
||
vector<typename MeshTypeTri::ScalarType> minDists;
|
||
vector<typename MeshTypeTri::FaceType *> faces;
|
||
ray.SetDirection(-raydir);
|
||
f = vcg::tri::DoRay<MeshTypeTri, GRID>(gridmesh, grid, ray, diag / 4.0, t);
|
||
|
||
if (f)
|
||
{
|
||
closests.push_back(ray.Origin() + ray.Direction() * t);
|
||
minDists.push_back(fabs(t));
|
||
faces.push_back(f);
|
||
}
|
||
ray.SetDirection(raydir);
|
||
fr = vcg::tri::DoRay<MeshTypeTri, GRID>(gridmesh, grid, ray, diag / 4.0, t);
|
||
if (fr)
|
||
{
|
||
closests.push_back(ray.Origin() + ray.Direction() * t);
|
||
minDists.push_back(fabs(t));
|
||
faces.push_back(fr);
|
||
}
|
||
|
||
if (fr)
|
||
if (fr->N() * raydir < 0)
|
||
fr = 0; // discard: inverse normal;
|
||
typename MeshType::CoordType newPos;
|
||
if (minDists.size() == 0)
|
||
{
|
||
newPos = vp->P();
|
||
f = 0;
|
||
}
|
||
else
|
||
{
|
||
int minI = std::min_element(minDists.begin(), minDists.end()) - minDists.begin();
|
||
newPos = closests[minI];
|
||
f = faces[minI];
|
||
}
|
||
|
||
if (f)
|
||
vp->P() = newPos;
|
||
}
|
||
|
||
}; //end Smooth class
|
||
|
||
} // End namespace tri
|
||
} // End namespace vcg
|
||
|
||
#endif // VCG_SMOOTH
|