vcglib/vcg/complex/trimesh/geodesic.h

288 lines
9.4 KiB
C++

/*#***************************************************************************
* Geodesic.h o o *
* o o *
* Visual Computing Group _ O _ *
* IEI Institute, CNUCE Institute, CNR Pisa \/)\/ *
* /\/| *
* Copyright(C) 1999 by Paolo Cignoni, | *
* All rights reserved. \ *
* *
* Permission to use, copy, modify, distribute and sell this software and *
* its documentation for any purpose is hereby granted without fee, provided *
* that the above copyright notice appear in all copies and that both that *
* copyright notice and this permission notice appear in supporting *
* documentation. the author makes no representations about the suitability *
* of this software for any purpose. It is provided "as is" without express *
* or implied warranty. *
* *
***************************************************************************#*/
/*#**************************************************************************
History
$Log: not supported by cvs2svn $
*#**************************************************************************/
#include <assert.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/math/base.h>
#include <deque>
#include <vector>
#include <list>
#include <functional>
namespace vcg{
template <class MeshType>
class Geo{
public:
typedef typename MeshType::VertexPointer VertexPointer;
template <class MeshType>
struct TempData{
TempData(){}
TempData(const double & d_){d=d_;visited=false;}
double d;
bool visited;
};
typedef SimpleTempData<std::vector<typename MeshType::VertexType>, TempData<MeshType> > TempDataType;
static TempDataType & TD(){ static TempDataType td; return td;}
struct pred: public std::binary_function<VertexPointer,VertexPointer,bool>{
bool operator()(const VertexPointer& v0, const VertexPointer& v1) const
{return (Geo<MeshType>::TD()[v0].d > Geo<MeshType>::TD()[v1].d);}
};
static typename MeshType::VertexPointer BuildSP(
MeshType & m,
std::vector<typename MeshType::VertexPointer> & _frontier,
double & max_distance,
bool fartestOnBorder = false
)
{
TD().c = &m.vert;
bool isLeaf;
std::vector<typename MeshType::VertexPointer> frontier;
std::vector<typename MeshType::VertexPointer> :: iterator tmp;
frontier.clear();
//Requirements
assert(m.HasVFTopology());
if(m.vn==0) return NULL;
MeshType::VertexIterator ii;
std::list<typename MeshType::VertexPointer> children;
typename MeshType::VertexPointer curr,fartest,pw1;
bool toQueue;
TD().Start(TempData<MeshType>(-1.0));
std::list<typename MeshType::VertexPointer>::iterator is;
std::deque<typename MeshType::VertexPointer> leaves;
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > expansion;
std::vector <typename MeshType::VertexPointer >::const_iterator ifr;
face::VFIterator<typename MeshType::FaceType> x;int k;
typename MeshType::VertexPointer pw;
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr){
TD()[*ifr].visited= true;
TD()[*ifr].d = 0.0;
}
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr)
{
// determina la distanza dei vertici della fan
for( x.f = (*ifr)->VFp(), x.z = (*ifr)->VFi(); x.f!=0; ++x )
for(k=0;k<2;++k)
{
if(k==0) pw = x.f->V1(x.z);
else pw = x.f->V2(x.z);
if(TD()[pw].d ==-1){
TD()[pw].d = Distance(pw->cP(),(*ifr)->cP());
frontier.push_back(pw);
}
}
}
// initialize Heap
make_heap(frontier.begin(),frontier.end(),pred());
double curr_d,d_curr = 0.0;
max_distance=0.0;
std::vector<typename MeshType::VertexPointer >:: iterator iv;
while(!frontier.empty())
{ //printf("size: %d\n", frontier.size());
expansion.clear();
pop_heap(frontier.begin(),frontier.end(),pred());
curr = frontier.back();
frontier.pop_back();
d_curr = TD()[curr].d;
TD()[curr].visited = true;
isLeaf = (!fartestOnBorder || curr->IsB());
face::VFIterator<typename MeshType::FaceType> x;int k;
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
for(k=0;k<2;++k)
{
if(k==0) {
pw = x.f->V1(x.z);
pw1=x.f->V2(x.z);
}
else {
pw = x.f->V2(x.z);
pw1=x.f->V1(x.z);
}
const double & d_pw1 = TD()[pw1].d;
if((!TD()[pw1].visited ) || d_curr == 0.0)
{
if(TD()[pw].d == -1){
curr_d = TD()[curr].d + (pw->P()-curr->P()).Norm();
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
}
continue;
}
assert( TD()[pw1].d != -1);
assert( (curr!=pw) && (pw!=pw1) && (pw1 != curr));
assert(d_pw1!=-1.0);
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
//************** (vedi figura in file distance.gif)
Point3<MeshType::ScalarType> w_c = pw->cP()- curr->cP();
Point3<MeshType::ScalarType> w_w1 = pw->cP()- pw1->cP();
Point3<MeshType::ScalarType> w1_c = pw1->cP()- curr->cP();
double ew_c = (w_c).Norm();
double ew_w1 = (w_w1).Norm();
double ec_w1 = (w1_c).Norm();
double alpha,alpha_, beta,beta_,theta_c,theta,h,delta,s,a,b;
alpha = acos((w_c*w1_c)/(ew_c*ec_w1));
s = (d_curr + d_pw1+ec_w1)/2;
a = s/ec_w1;
b = a*s;
alpha_ = 2*acos ( math::Min(1.0,sqrt( (b- a* d_pw1)/d_curr)));
if ( alpha+alpha_ > M_PI){
curr_d = d_curr + ew_c;
}else
{
beta_ = 2*acos ( math::Min(1.0,sqrt( (b- a* d_curr)/d_pw1)));
beta = acos((w_w1)*(-w1_c)/(ew_w1*ec_w1));
if ( beta+beta_ > M_PI)
curr_d = d_pw1 + ew_w1;
else
{
theta = M_PI-alpha-alpha_;
delta = cos(theta)* ew_c;
h = sin(theta)* ew_c;
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
}
}
//**************************************************************************************
toQueue = (TD()[(pw)].d==-1);
if(toQueue){// se non e'gia' in coda ce lo mette
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
}else
{
if( TD()[(pw)].d > curr_d )
TD()[(pw)].d = curr_d;
}
if(isLeaf){
if(d_curr > max_distance){
max_distance = d_curr;
fartest = curr;
}
}
}
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > ::iterator i;
for(i = expansion.begin(); i!= expansion.end(); ++i)
{
TD()[(*i).first].d = (*i).second;
frontier.push_back((*i).first);
push_heap(frontier.begin(),frontier.end(),pred());
} // end for
}// end while
// scrivi le distanze sul campo qualita' (nn: farlo parametrico)
MeshType::VertexIterator vi;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
(*vi).Q() = TD()[&(*vi)].d;
TD().Stop();
return fartest;
}
public:
static void FartestPoint( MeshType & m,
std::vector<typename MeshType::VertexPointer> & fro,//insieme di vertici da cui trovare le distanze
typename MeshType::VertexPointer & fartest, //punto piu'lontano
double & distance){ //distaza geodesica
fartest = BuildSP(m,fro,distance,false);
}
static void FartestBPoint(
MeshType & m,
std::vector<typename MeshType::VertexPointer> & fro, //insieme di vertici da cui trovare le distanze
typename MeshType::VertexPointer & fartest, //punto piu'lontano
double & distance){
fartest = BuildSP(m,fro,distance,true);
}
static void DistanceFromBorder( MeshType & m,
typename MeshType::VertexPointer & v0, //ritorna il vertice piu'lontano da ogni punto sul bordo
typename MeshType::VertexPointer & v1, // ritorna il vertice di bordo piu'vicino a v0
double & distance // distanza geodesica tra v0 e v1
)
{
std::vector<typename MeshType::VertexPointer> fro;
MeshType::VertexIterator vi;
MeshType::VertexPointer fartest;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( (*vi).IsB())
fro.push_back(&(*vi));
FartestPoint(m,fro,fartest,distance);
}
static void MostInternal( MeshType & m,
typename MeshType::VertexPointer & v0, //ritorna il vertice piu'lontano da ogni punto sul bordo
typename MeshType::VertexPointer & v1, // ritorna il vertice di bordo piu'vicino a v0
double & distance // distanza geodesica tra v0 e v1
)
{
std::vector<typename MeshType::VertexPointer> fro;
MeshType::VertexIterator vi;
MeshType::VertexPointer fartest;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( (*vi).IsB())
fro.push_back(&(*vi));
FartestPoint(m,fro,fartest,distance);
fro.clear();
fro.push_back(fartest);
FartestBPoint(m,fro,fartest,distance);
}
};
};// end namespace