vcglib/vcg/simplex/vertex/component_ocf.h

649 lines
22 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.16 2008/04/03 23:15:40 cignoni
added optional mark and cleaned up some nasty type bugs.
Revision 1.15 2008/03/17 11:39:15 ganovelli
added curvature and curvatruredir (compiled .net 2005 and gcc)
Revision 1.14 2008/03/11 09:22:07 cignoni
Completed the garbage collecting functions CompactVertexVector and CompactFaceVector.
Revision 1.13 2008/02/05 20:42:43 cignoni
Other small typos
Revision 1.12 2008/02/04 21:26:49 ganovelli
added ImportLocal which imports all local attributes into vertexplus and faceplus.
A local attribute is everything (N(), C(), Q()....) except pointers to other simplices
(i.e. FFAdj, VFAdj, VertexRef) which are set to NULL.
Added some function for const attributes
Revision 1.11 2007/12/11 18:25:31 cignoni
added missing include limits
Revision 1.10 2007/12/11 11:36:03 cignoni
Added the CompactVertexVector garbage collecting function.
Revision 1.9 2006/12/11 23:42:00 ganovelli
bug Index()() instead of Index()
Revision 1.8 2006/12/04 11:17:42 ganovelli
added forward declaration of TriMesh
Revision 1.7 2006/11/07 17:22:52 cignoni
many gcc compiling issues
Revision 1.6 2006/11/07 15:13:57 zifnab1974
Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem
Revision 1.5 2006/11/07 11:29:24 cignoni
Corrected some errors in the reflections Has*** functions
Revision 1.4 2006/10/31 16:02:59 ganovelli
vesione 2005 compliant
Revision 1.3 2006/02/28 11:59:55 ponchio
g++ compliance:
begin() -> (*this).begin() and for end(), size(), Base(), Index()
Revision 1.2 2005/12/12 11:17:32 cignoni
Corrected update function, now only the needed simplexes should be updated.
Revision 1.1 2005/10/14 15:07:59 cignoni
First Really Working version
****************************************************************************/
/*
Note
OCF = Optional Component Fast (hopefully)
compare with OCC(Optional Component Compact)
Mainly the trick here is to store a base pointer in each simplex...
****************************************************************************/
#ifndef __VCG_VERTEX_PLUS_COMPONENT_OCF
#define __VCG_VERTEX_PLUS_COMPONENT_OCF
#include <vcg/simplex/vertex/component.h>
#include <vector>
#include <limits>
namespace vcg {
namespace vertex {
/*
All the Components that can be added to a vertex should be defined in the namespace vert:
*/
template <class VALUE_TYPE>
class vector_ocf: public std::vector<VALUE_TYPE> {
typedef std::vector<VALUE_TYPE> BaseType;
typedef typename vector_ocf<VALUE_TYPE>::iterator ThisTypeIterator;
public:
vector_ocf():std::vector<VALUE_TYPE>(){
QualityEnabled = false;
ColorEnabled = false;
MarkEnabled = false;
NormalEnabled = false;
VFAdjacencyEnabled = false;
CurvatureEnabled = false;
CurvatureEnabled = false;
CurvatureDirEnabled = false;
RadiusEnabled = false;
}
// override di tutte le funzioni che possono spostare
// l'allocazione in memoria del container
void push_back(const VALUE_TYPE & v)
{
BaseType::push_back(v);
BaseType::back()._ovp = this;
if (ColorEnabled) CV.push_back(vcg::Color4b(vcg::Color4b::White));
if (MarkEnabled) MV.push_back(0);
if (NormalEnabled) NV.push_back(typename VALUE_TYPE::NormalType());
if (VFAdjacencyEnabled) AV.push_back(VFAdjType());
if (CurvatureEnabled) CuV.push_back(typename VALUE_TYPE::CurvatureType());
if (CurvatureDirEnabled) CuDV.push_back(typename VALUE_TYPE::CurvatureDirType());
if (RadiusEnabled) RadiusV.push_back(typename VALUE_TYPE::RadiusType());
}
void pop_back();
void resize(const unsigned int & _size)
{
const unsigned int oldsize = BaseType::size();
BaseType::resize(_size);
if(oldsize<_size){
ThisTypeIterator firstnew = BaseType::begin();
advance(firstnew,oldsize);
_updateOVP(firstnew,(*this).end());
}
if (ColorEnabled) CV.resize(_size);
if (MarkEnabled) MV.resize(_size);
if (NormalEnabled) NV.resize(_size);
if (VFAdjacencyEnabled) AV.resize(_size);
if (CurvatureEnabled) CuV.resize(_size);
if (CurvatureDirEnabled) CuDV.resize(_size);
if (RadiusEnabled) RadiusV.resize(_size);
}
void reserve(const unsigned int & _size)
{
BaseType::reserve(_size);
if (ColorEnabled) CV.reserve(_size);
if (MarkEnabled) MV.reserve(_size);
if (NormalEnabled) NV.reserve(_size);
if (VFAdjacencyEnabled) AV.reserve(_size);
if (CurvatureEnabled) CuV.reserve(_size);
if (CurvatureDirEnabled) CuDV.reserve(_size);
if (RadiusEnabled) RadiusV.reserve(_size);
}
void _updateOVP(ThisTypeIterator lbegin, ThisTypeIterator lend)
{
ThisTypeIterator vi;
for(vi=lbegin;vi!=lend;++vi)
(*vi)._ovp=this;
}
// this function is called by the specialized Reorder function, that is called whenever someone call the allocator::CompactVertVector
void ReorderVert(std::vector<size_t> &newVertIndex )
{
size_t i=0;
if (ColorEnabled) assert( CV.size() == newVertIndex.size() );
if (MarkEnabled) assert( MV.size() == newVertIndex.size() );
if (NormalEnabled) assert( NV.size() == newVertIndex.size() );
if (VFAdjacencyEnabled) assert( AV.size() == newVertIndex.size() );
if (CurvatureEnabled) assert(CuV.size() == newVertIndex.size() );
if (CurvatureDirEnabled)assert(CuDV.size() == newVertIndex.size() );
assert( (!RadiusEnabled) || RadiusV.size() == newVertIndex.size() );
for(i=0;i<newVertIndex.size();++i)
{
if(newVertIndex[i] != std::numeric_limits<size_t>::max() )
{
assert(newVertIndex[i] <= i);
if (ColorEnabled) CV[newVertIndex[i]] = CV[i];
if (MarkEnabled) MV[newVertIndex[i]] = MV[i];
if (NormalEnabled) NV[newVertIndex[i]] = NV[i];
if (VFAdjacencyEnabled) AV[newVertIndex[i]] = AV[i];
if (CurvatureEnabled) CuV[newVertIndex[i]] = CuV[i];
if (CurvatureDirEnabled) CuDV[newVertIndex[i]] =CuDV[i];
if (RadiusEnabled) RadiusV[newVertIndex[i]] = RadiusV[i];
}
}
if (ColorEnabled) CV.resize(BaseType::size());
if (MarkEnabled) MV.resize(BaseType::size());
if (NormalEnabled) NV.resize(BaseType::size());
if (VFAdjacencyEnabled) AV.resize(BaseType::size());
if (CurvatureEnabled) CuV.resize(BaseType::size());
if (CurvatureDirEnabled) CuDV.resize(BaseType::size());
if (RadiusEnabled) RadiusV.resize(BaseType::size());
}
////////////////////////////////////////
// Enabling Eunctions
bool IsQualityEnabled() const {return QualityEnabled;}
void EnableQuality() {
assert(VALUE_TYPE::HasQualityOcf());
QualityEnabled=true;
QV.resize((*this).size());
}
void DisableQuality() {
assert(VALUE_TYPE::HasQualityOcf());
QualityEnabled=false;
QV.clear();
}
bool IsColorEnabled() const {return ColorEnabled;}
void EnableColor() {
assert(VALUE_TYPE::HasColorOcf());
ColorEnabled=true;
CV.resize((*this).size());
}
void DisableColor() {
assert(VALUE_TYPE::HasColorOcf());
ColorEnabled=false;
CV.clear();
}
bool IsMarkEnabled() const {return MarkEnabled;}
void EnableMark() {
assert(VALUE_TYPE::HasMarkOcf());
MarkEnabled=true;
MV.resize((*this).size());
}
void DisableMark() {
assert(VALUE_TYPE::HasMarkOcf());
MarkEnabled=false;
MV.clear();
}
bool IsNormalEnabled() const {return NormalEnabled;}
void EnableNormal() {
assert(VALUE_TYPE::HasNormalOcf());
NormalEnabled=true;
NV.resize((*this).size());
}
void DisableNormal() {
assert(VALUE_TYPE::HasNormalOcf());
NormalEnabled=false;
NV.clear();
}
void EnableVFAdjacency() {
assert(VALUE_TYPE::HasVFAdjacencyOcf());
VFAdjacencyEnabled=true;
AV.resize((*this).size());
}
void DisableVFAdjacency() {
assert(VALUE_TYPE::HasVFAdjacencyOcf());
VFAdjacencyEnabled=false;
AV.clear();
}
bool IsCurvatureEnabled() const {return CurvatureEnabled;}
void EnableCurvature() {
assert(VALUE_TYPE::HasCurvatureOcf());
CurvatureEnabled=true;
CuV.resize((*this).size());
}
void DisableCurvature() {
assert(VALUE_TYPE::HasCurvatureOcf());
CurvatureEnabled=false;
CuV.clear();
}
bool IsCurvatureDirEnabled() const {return CurvatureDirEnabled;}
void EnableCurvatureDir() {
assert(VALUE_TYPE::HasCurvatureDirOcf());
CurvatureDirEnabled=true;
CuDV.resize((*this).size());
}
void DisableCurvatureDir() {
assert(VALUE_TYPE::HasCurvatureDirOcf());
CurvatureDirEnabled=false;
CuDV.clear();
}
bool IsRadiusEnabled() const {return RadiusEnabled;}
void EnableRadius() {
assert(VALUE_TYPE::HasRadiusOcf());
RadiusEnabled=true;
RadiusV.resize((*this).size());
}
void DisableRadius() {
assert(VALUE_TYPE::HasRadiusOcf());
RadiusEnabled=false;
RadiusV.clear();
}
struct VFAdjType {
typename VALUE_TYPE::FacePointer _fp ;
int _zp ;
};
public:
std::vector<typename VALUE_TYPE::QualityType> QV;
std::vector<typename VALUE_TYPE::CurvatureType> CuV;
std::vector<typename VALUE_TYPE::CurvatureDirType> CuDV;
std::vector<typename VALUE_TYPE::RadiusType> RadiusV;
std::vector<typename VALUE_TYPE::ColorType> CV;
std::vector<typename VALUE_TYPE::NormalType> NV;
std::vector<struct VFAdjType> AV;
std::vector<int> MV;
bool QualityEnabled;
bool ColorEnabled;
bool NormalEnabled;
bool VFAdjacencyEnabled;
bool CurvatureEnabled;
bool CurvatureDirEnabled;
bool MarkEnabled;
bool RadiusEnabled;
};
//template<> void EnableAttribute<typename VALUE_TYPE::NormalType>(){ NormalEnabled=true;}
/*------------------------- COORD -----------------------------------------*/
/*----------------------------- VFADJ ------------------------------*/
template <class T> class VFAdjOcf: public T {
public:
typename T::FacePointer &VFp() {
assert((*this).Base().VFAdjacencyEnabled);
return (*this).Base().AV[(*this).Index()]._fp;
}
typename T::FacePointer cVFp() const {
if(! (*this).Base().VFAdjacencyEnabled ) return 0;
else return (*this).Base().AV[(*this).Index()]._fp;
}
int &VFi() {
assert((*this).Base().VFAdjacencyEnabled);
return (*this).Base().AV[(*this).Index()]._zp;
}
template <class LeftV>
void ImportLocal(const LeftV & leftV)
{
if((*this).Base().VFAdjacencyEnabled) // init the data only if they are enabled!
{
VFp() = NULL;
VFi() = -1;
}
T::ImportLocal(leftV);
}
static bool HasVFAdjacency() { return true; }
static bool HasVFAdjacencyOcf() {assert(!T::HasVFAdjacencyOcf()); return true; }
private:
};
/*------------------------- Normal -----------------------------------------*/
template <class A, class T> class NormalOcf: public T {
public:
typedef A NormalType;
static bool HasNormal() { return true; }
static bool HasNormalOcf() { return true; }
NormalType &N() {
// you cannot use Normals before enabling them with: yourmesh.vert.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().NV[(*this).Index()]; }
const NormalType &N() const {
// you cannot use Normals before enabling them with: yourmesh.vert.EnableNormal()
assert((*this).Base().NormalEnabled);
return (*this).Base().NV[(*this).Index()]; }
template <class LeftV>
void ImportLocal(const LeftV & leftV){
if((*this).Base().NormalEnabled && leftV.Base().NormalEnabled ) // copy the data only if they are enabled in both vertices
N().Import(leftV.cN());
T::ImporLocal(leftV);}
};
template <class T> class Normal3sOcf: public NormalOcf<vcg::Point3s, T> {};
template <class T> class Normal3fOcf: public NormalOcf<vcg::Point3f, T> {};
template <class T> class Normal3dOcf: public NormalOcf<vcg::Point3d, T> {};
///*-------------------------- COLOR ----------------------------------*/
template <class A, class T> class ColorOcf: public T {
public:
typedef A ColorType;
ColorType &C() { assert((*this).Base().NormalEnabled); return (*this).Base().CV[(*this).Index()]; }
const ColorType &cC() const { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; }
template <class LeftV>
void ImportLocal(const LeftV & leftV)
{
if((*this).Base().ColorEnabled && leftV.Base().ColorEnabled ) // copy the data only if they are enabled in both vertices
C() = leftV.cC();
T::ImporLocal(leftV);
}
static bool HasColor() { return true; }
static bool HasColorOcf() { assert(!T::HasColorOcf()); return true; }
};
template <class T> class Color4bOcf: public ColorOcf<vcg::Color4b, T> {};
///*-------------------------- QUALITY ----------------------------------*/
template <class A, class T> class QualityOcf: public T {
public:
typedef A QualityType;
QualityType &Q() { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; }
template <class LeftV>
void ImportLocal(const LeftV & leftV)
{
if((*this).Base().QualityEnabled && leftV.Base().QualityEnabled ) // copy the data only if they are enabled in both vertices
Q() = leftV.cQ();
T::ImporLocal(leftV);
}
static bool HasQuality() { return true; }
static bool HasQualityOcf() { assert(!T::HasQualityOcf()); return true; }
};
template <class T> class QualityfOcf: public QualityOcf<float, T> {};
///*-------------------------- MARK ----------------------------------*/
template <class T> class MarkOcf: public T {
public:
inline int & IMark() {
assert((*this).Base().MarkEnabled);
return (*this).Base().MV[(*this).Index()];
}
inline int IMark() const {
assert((*this).Base().MarkEnabled);
return (*this).Base().MV[(*this).Index()];
}
template <class LeftV>
void ImportLocal(const LeftV & leftV)
{
//if((*this).Base().MarkEnabled && leftV.Base().MarkEnabled ) // WRONG I do not know anything about leftV!
if((*this).Base().MarkEnabled) // copy the data only if they are enabled in both vertices
IMark() = leftV.IMark();
T::ImportLocal(leftV);
}
static bool HasMark() { return true; }
static bool HasMarkOcf() { return true; }
inline void InitIMark() { IMark() = 0; }
};
///*-------------------------- CURVATURE ----------------------------------*/
template <class A, class TT> class CurvatureOcf: public TT {
public:
typedef Point2<A> CurvatureType;
typedef typename CurvatureType::ScalarType ScalarType;
ScalarType &Kh(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0];}
ScalarType &Kg(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1];}
const ScalarType &cKh() const { assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0];}
const ScalarType &cKg() const { assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1];}
template <class LeftV>
void ImportLocal(const LeftV & leftV){
// if((*this).Base().CurvatureEnabled && leftV.Base().CurvatureEnabled ) // WRONG I do not know anything about leftV!
if((*this).Base().CurvatureEnabled)
{
(*this).Base().CuV[(*this).Index()][0] = leftV.cKh();
(*this).Base().CuV[(*this).Index()][1] = leftV.cKg();
}
TT::ImportLocal(leftV);
}
static bool HasCurvatureOcf() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureOcf"));TT::Name(name);}
private:
};
template <class T> class CurvaturefOcf: public CurvatureOcf<float, T> {};
template <class T> class CurvaturedOcf: public CurvatureOcf<double, T> {};
///*-------------------------- CURVATURE DIR ----------------------------------*/
template <class S>
struct CurvatureDirTypeOcf{
typedef Point3<S> VecType;
typedef S ScalarType;
CurvatureDirTypeOcf () {}
Point3<S>max_dir,min_dir;
S k1,k2;
};
template <class A, class TT> class CurvatureDirOcf: public TT {
public:
typedef A CurvatureDirType;
typedef typename CurvatureDirType::VecType VecType;
typedef typename CurvatureDirType::ScalarType ScalarType;
VecType &PD1(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].max_dir;}
VecType &PD2(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].min_dir;}
const VecType &cPD1() const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuV[(*this).Index()].max_dir;}
const VecType &cPD2() const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuV[(*this).Index()].min_dir;}
ScalarType &K1(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;}
ScalarType &K2(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;}
const ScalarType &cK1() const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;}
const ScalarType &cK2()const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;}
static bool HasCurvatureDirOcf() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirOcf"));TT::Name(name);}
private:
};
template <class T> class CurvatureDirfOcf: public CurvatureDirOcf<CurvatureDirTypeOcf<float>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirfOcf"));T::Name(name);}
};
template <class T> class CurvatureDirdOcf: public CurvatureDirOcf<CurvatureDirTypeOcf<double>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirdOcf"));T::Name(name);}
};
///*-------------------------- RADIUS ----------------------------------*/
template <class A, class TT> class RadiusOcf: public TT {
public:
typedef A RadiusType;
typedef RadiusType ScalarType;
RadiusType &R(){ assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];}
const RadiusType &cR() const { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];}
template <class LeftV>
void ImportLocal(const LeftV & leftV)
{
//if ((*this).Base().RadiusEnabled && leftV.Base().RadiusEnabled ) // WRONG I do not know anything about leftV!
if ((*this).Base().RadiusEnabled)
(*this).Base().RadiusV[(*this).Index()] = leftV.cR();
TT::ImportLocal(leftV);
}
static bool HasRadius() { return true; }
static bool HasRadiusOcf() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("RadiusOcf")); TT::Name(name);}
private:
};
template <class T> class RadiusfOcf: public RadiusOcf<float, T> {};
template <class T> class RadiusdOcf: public RadiusOcf<double, T> {};
///*-------------------------- InfoOpt ----------------------------------*/
template < class T> class InfoOcf: public T {
public:
vector_ocf<typename T::VertType> &Base() const { return *_ovp;}
inline int Index() const {
typename T::VertType const *tp=static_cast<typename T::VertType const*>(this);
int tt2=tp- &*(_ovp->begin());
return tt2;
}
public:
vector_ocf<typename T::VertType> *_ovp;
static bool HasQualityOcf() { return false; }
static bool HasVFAdjacencyOcf() { return false; }
};
} // end namespace vert
namespace tri
{
template < class, class,class > class TriMesh;
template < class VertexType, class FaceContainerType, class EdgeContainerType >
bool HasPerVertexRadius (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType, EdgeContainerType > & m)
{
if(VertexType::HasRadiusOcf()) return m.vert.IsRadiusEnabled();
else return VertexType::HasRadius();
}
template < class VertexType, class FaceContainerType, class EdgeContainerType >
bool HasPerVertexQuality (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType , EdgeContainerType> & m)
{
if(VertexType::HasQualityOcf()) return m.vert.IsQualityEnabled();
else return VertexType::HasQuality();
}
template < class VertexType, class FaceContainerType, class EdgeContainerType >
bool HasPerVertexCurvature (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType, EdgeContainerType > & m)
{
if(VertexType::HasCurvatureOcf()) return m.vert.IsCurvatureEnabled();
else return VertexType::HasCurvature();
}
template < class VertexType, class FaceContainerType, class EdgeContainerType >
bool HasPerVertexCurvatureDir (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType, EdgeContainerType > & m)
{
if(VertexType::HasCurvatureDirOcf()) return m.vert.IsCurvatureDirEnabled();
else return VertexType::HasCurvatureDir();
}
template < class VertexType >
void ReorderVert( std::vector<size_t> &newVertIndex, vertex::vector_ocf< VertexType > &vertVec)
{
vertVec.ReorderVert(newVertIndex);
}
}
}// end namespace vcg
#endif