vcglib/apps/trimeshinfo/main.cpp

681 lines
15 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.7 2005/02/07 15:44:31 rita_borgo
Fixed Color and Volume
Revision 1.6 2005/02/01 17:37:53 rita_borgo
Fixed Volume and Color
Revision 1.5 2005/01/18 16:33:12 rita_borgo
Added OFF file Option
Revision 1.4 2005/01/17 18:19:00 rita_borgo
Added new routines.
Self-intersection first release
Revision 1.2 2005/01/03 16:13:09 rita_borgo
Added Standard comments
****************************************************************************/
#include <vector>
#include <string>
#include <stack>
using namespace std;
#include<vcg/simplex/vertex/vertex.h>
#include<vcg/simplex/face/with/afav.h>
#include<vcg/simplex/face/topology.h>
#include<vcg/simplex/face/pos.h> // mi sembra di averlo aggiunto!
#include<vcg/complex/trimesh/base.h>
#include<vcg/complex/trimesh/update/topology.h>
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/update/bounding.h>
#include <vcg/complex/trimesh/clean.h>
#include <vcg/space/intersection/triangle_triangle3.h>
#include <vcg/math/histogram.h>
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>
// loader
#include<wrap/io_trimesh/import_ply.h>
#include "defs.h"
using namespace vcg;
using namespace tri;
using namespace face;
class MyFace;
class MyEdge;
class MyVertex:public Vertex<float,MyEdge,MyFace>{};
class MyFace :public FaceAFAV<MyVertex,MyEdge,MyFace>{};
class MyMesh: public tri::TriMesh< std::vector<MyVertex>, std::vector<MyFace > >{};
void OpenMesh(const char *filename, MyMesh &m)
{
int err = tri::io::Importer<MyMesh>::Open(m,filename);
if(err) {
printf("Error in reading %s: '%s'\n",filename,tri::io::Importer<MyMesh>::ErrorMsg(err));
exit(-1);
}
printf("read mesh `%s'\n", filename);
}
inline char* GetExtension(char* filename)
{
for(int i=strlen(filename)-1; i >= 0; i--)
if(filename[i] == '.')
break;
if(i > 0)
return &(filename[i+1]);
else
return NULL;
}
typedef MyMesh::VertexPointer VertexPointer;
typedef MyMesh::VertexIterator VertexIterator;
/* classe di confronto per l'algoritmo di individuazione vertici duplicati*/
template <class VertexIterator>
class DuplicateVert_Compare{
public:
inline bool operator() (VertexIterator a, VertexIterator b)
{
return *a < *b;
}
};
static int DuplicateVertex( MyMesh & m ) // V1.0
{
if(m.vert.size()==0 || m.vn==0)
return 0;
std::map<VertexPointer, VertexPointer> mp;
int i,j;
VertexIterator vi;
int deleted=0;
int k=0;
int num_vert = m.vert.size();
vector<VertexPointer> perm(num_vert);
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
perm[k] = &(*vi);
DuplicateVert_Compare<VertexPointer> c_obj;
std::sort(perm.begin(),perm.end(),c_obj);
j = 0;
i = j;
mp[perm[i]] = perm[j];
++i;
for(;i!=num_vert;)
{
if( (! (*perm[i]).IsD()) &&
(! (*perm[j]).IsD()) &&
(*perm[i]).P() == (*perm[j]).cP() )
{
VertexPointer t = perm[i];
mp[perm[i]] = perm[j];
++i;
(*t).SetD();
deleted++;
}
else
{
j = i;
++i;
}
}
return deleted;
}
void main(int argc,char ** argv){
char *fmt;
MyMesh m;
bool DEBUG = false;
//load the mesh
//argv[1]=(char*)"c:\\checkup\\debug\\column1m.ply";
//argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\prism.off";
//argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\prova1.ply";
// print program info
printf("-------------------------------\n"
" TriMeshInfo V.1.01 \n"
" http://vcg.isti.cnr.it\n"
" release date: "__DATE__"\n"
"-------------------------------\n\n");
if(DEBUG)
argv[1] = "C:\\sf\\apps\\msvc\\trimeshinfo\\Release\\cube1.stl";
else
{
// load input meshes.
if(argc <= 1)
{
printf(MSG_ERR_N_ARGS);
exit(-1);
}
}
OpenMesh(argv[1],m);
FILE * index;
index = fopen((string(argv[1])+string("2.html")).c_str(),"w");
fprintf(index,"<p>Mesh info: %s </p>\n\n\n", argv[1]);
fprintf(index,"<p>GENERAL INFO </p>\n\n");
fprintf(index,"<p>Number of vertices: %d </p>\n", m.vn);
fprintf(index,"<p>Number of faces: %d </p>\n", m.fn);
printf("Mesh info:\n");
printf(" M: '%s'\n\t Number of vertices: %d \n", argv[1], m.vn);
printf("\t Number of faces: %d \n", m.fn);
if(m.HasPerFaceColor()||m.HasPerVertexColor())
{
Color4b Color=m.C();
fprintf(index, "<p>Object color(4b): %f %f %f </p>\n\n", Color[0], Color[1], Color[2]);
printf( "\t Object color(4b): %f %f %f \n", Color[0], Color[1], Color[2]);
}
vcg::tri::UpdateTopology<MyMesh>::FaceFace(m);
// IS MANIFOLD
MyMesh::FaceIterator f;
MyMesh::FaceIterator g;
vcg::face::Pos<MyMesh::FaceType> he;
vcg::face::Pos<MyMesh::FaceType> hei;
int j;
int man=0;
bool Manifold = true;
MyMesh::FaceIterator prova;
prova = m.face.end();
for(f=m.face.begin();f!=m.face.end();++f)
{
for (j=0;j<3;++j)
{
if(!IsManifold(*f,j))
{
Manifold = false;
f= m.face.end();
--f;
j=3;
}
}
}
if (!Manifold)
{
fprintf(index, "<p> Manifold: NO </p>");
printf( "\t Manifold: NO\n");
}
else
{
fprintf(index, "<p> Manifold: YES </p>");
printf( "\t Manifold: YES\n ");
}
// COUNT EDGES
MyMesh::FaceIterator fi;
int count_e = 0;
bool counted=false;
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
(*fi).SetS();
count_e +=3;
for(int i=0; i<3; ++i)
{
if (IsManifold(*fi,i))
{
if((*fi).FFp(i)->IsS())
count_e--;
}
else
{
hei.Set(&(*fi), i , fi->V(i));
he=hei;
he.NextF();
while (he.f!=hei.f)
{
if (he.f->IsS())
{
counted=true;
break;
}
else
{
he.NextF();
}
}
if (counted)
{
count_e--;
counted=false;
}
}
}
}
fprintf(index, "<p>Number of edges: %d </p>\n", count_e);
printf("\t Number of edges: %d \n", count_e);
// DA QUI IN POI!!!
// DEGENERATED FACES
int count_fd = 0;
for(fi=m.face.begin(); fi!=m.face.end();++fi)
if((*fi).Area() == 0)
count_fd++;
fprintf(index, "<p>Number of degenerated faces: %d </p>\n", count_fd);
printf("\t Number of degenerated faces: %d \n", count_fd);
// UNREFERENCED VERTEX
int count_uv = 0;
MyMesh::VertexIterator v;
for(v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearV();
for(f=m.face.begin();f!=m.face.end();++f)
for(j=0;j<3;++j)
(*f).V(j)->SetV();
for(v=m.vert.begin();v!=m.vert.end();++v)
if( !(*v).IsV() )
++count_uv;
fprintf(index,"<p>Number of unreferenced vertices: %d</p>\n",count_uv);
printf("\t Number of unreferenced vertices: %d\n",count_uv);
// HOLES COUNT
for(f=m.face.begin();f!=m.face.end();++f)
(*f).ClearS();
g=m.face.begin(); f=g;
int BEdges=0; int numholes=0;
if (Manifold)
{
for(f=g;f!=m.face.end();++f)
{
if(!(*f).IsS())
{
for(j=0;j<3;j++)
{
if ((*f).IsBorder(j))
{
BEdges++;
if(!(IsManifold(*f,j)))
{
(*f).SetS();
hei.Set(&(*f),j,f->V(j));
he=hei;
do
{
he.NextB();
he.f->SetS();
// BEdges++;
}
while (he.f!=hei.f);
//BEdges--;
numholes++;
}
}
}
}
}
}
else
{
for(f=g;f!=m.face.end();++f)
{
for(j=0;j<3;j++)
{
if ((*f).IsBorder(j))
{
BEdges++;
}
}
}
}
if (Manifold)
{
fprintf(index, "<p> Number of holes: %d </p> \n <p> Number of border edges: %d </p>", numholes, BEdges);
printf("\t Number of holes: %d \n", numholes, BEdges);
printf("\t Number of border edges: %d\n", numholes, BEdges);
}
else
{
fprintf(index, "<p> Number of border edges: %d </p>", BEdges);
printf("\t Number of border edges: %d\n", BEdges);
}
// Mesh Volume
float vol = m.Volume();
int nuh = numholes;
if((m.Volume()>0.)&&(Manifold)&&(numholes==0))
{
fprintf(index,"<p>Volume: %d </p>\n", m.Volume());
printf("\t Volume: %f \n", m.Volume());
}
// CONNECTED COMPONENTS
for(f=m.face.begin();f!=m.face.end();++f)
(*f).ClearS();
g=m.face.begin(); f=g;
int CountComp=0; int CountOrient=0;
stack<MyMesh::FaceIterator> sf;
MyMesh::FaceType *l;
for(f=m.face.begin();f!=m.face.end();++f)
{
if (!(*f).IsS())
{
(*f).SetS();
sf.push(f);
while (!sf.empty())
{
g=sf.top();
he.Set(&(*g),0,g->V(0));
sf.pop();
for(j=0;j<3;++j)
if( !(*g).IsBorder(j) )
{
l=he.f->FFp(j);
if( !(*l).IsS() )
{
(*l).SetS();
sf.push(l);
}
}
}
CountComp++;
}
}
fprintf(index, "<p> Number of connected components: %d </p>", CountComp);
printf("\t Number of connected components: %d\n", CountComp);
if(CountComp ==1)
{
int eulero; //v-e+f
eulero = (m.vn-count_uv)- (count_e+BEdges)+m.fn;
if(Manifold)
{
int genus = (2-eulero)>>1;
fprintf(index, "<p> Genus: %d </p> \n ", genus);
printf( "\t Genus: %d \n", genus);
}
}
// REGULARITY
bool Regular=true;
bool Semiregular=true;
int inc=0;
for(v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearS();
for(f=m.face.begin();f!=m.face.end();++f)
{
for (j=0; j<3; j++)
{
he.Set(&(*f),j,f->V(j));
if (!(*f).IsBorder(j) && !(*f).IsBorder((j+2)%3) && !f->V(j)->IsS())
{
hei=he;
inc=1;
he.FlipE();
he.NextF();
while (he.f!=hei.f)
{
he.FlipE();
if (he.IsBorder())
{
inc=6;
break;
}
he.NextF();
inc++;
}
if (inc!=6)
Regular=false;
if (inc!=6 && inc!=5)
Semiregular=false;
f->V(j)->SetS();
}
else
f->V(j)->SetS();
}
if (Semiregular==false)
break;
}
if (Regular)
{
fprintf(index, "<p> Type of Mesh: REGULAR</p>");
printf("\t Type of Mesh: REGULAR\n");
}
else if (Semiregular)
{
fprintf(index, "<p> Type of Mesh: SEMIREGULAR</p>");
printf("\t Type of Mesh: SEMIREGULAR\n");
}
else
{
fprintf(index, "<p> Type of Mesh: IRREGULAR</p>");
printf("\t Type of Mesh: IRREGULAR\n");
}
// ORIENTABLE E ORIENTED MESH
bool Orientable=true;
bool Oriented=true;
if (!Manifold)
{
fprintf(index, "<p> Orientable Mesh: NO</p>");
printf( "\t Orientable Mesh: NO\n");
}
else
{
for(f=m.face.begin();f!=m.face.end();++f)
{
(*f).ClearS();
(*f).ClearUserBit(0);
}
g=m.face.begin(); f=g;
for(f=m.face.begin();f!=m.face.end();++f)
{
if (!(*f).IsS())
{
(*f).SetS();
sf.push(f);
while (!sf.empty())
{
g=sf.top();
sf.pop();
for(j=0;j<3;++j)
{
if( !(*g).IsBorder(j) )
{
he.Set(&(*g),0,g->V(0));
l=he.f->FFp(j);
he.Set(&(*g),j,g->V(j));
hei.Set(he.f->FFp(j),he.f->FFi(j), (he.f->FFp(j))->V(he.f->FFi(j)));
if( !(*g).IsUserBit(0) )
{
if (he.v!=hei.v) // bene
{
if ((*l).IsS() && (*l).IsUserBit(0))
{
Orientable=false;
break;
}
else if (!(*l).IsS())
{
(*l).SetS();
sf.push(l);
}
}
else if (!(*l).IsS())
{
Oriented=false;
(*l).SetS();
(*l).SetUserBit(0);
sf.push(l);
}
else if ((*l).IsS() && !(*l).IsUserBit(0))
{
Orientable=false;
break;
}
}
else if (he.v==hei.v) // bene
{
if ((*l).IsS() && (*l).IsUserBit(0))
{
Orientable=false;
break;
}
else if (!(*l).IsS())
{
(*l).SetS();
sf.push(l);
}
}
else if (!(*l).IsS())
{
Oriented=false;
(*l).SetS();
(*l).SetUserBit(0);
sf.push(l);
}
else if ((*l).IsS() && !(*l).IsUserBit(0))
{
Orientable=false;
break;
}
}
}
}
}
if (!Orientable)
break;
}
if (Orientable)
{
fprintf(index, "<p> Orientable Mesh: YES</p>");
printf( "\t Orientable Mesh: YES\n");
}
else
{
fprintf(index, "<p> Orientable Mesh: NO</p>");
printf( "\t Orientable Mesh: NO\n");
}
}
if (Oriented && Manifold)
{
fprintf(index, "<p> Oriented Mesh: YES</p>");
printf( "\t Oriented Mesh: YES\n");
}
else
{
fprintf(index, "<p> Oriented Mesh: NO</p>");
printf( "\t Oriented Mesh: NO\n");
}
int dv = DuplicateVertex(m);
if(dv>0)
{
fprintf(index, "<p> Duplicated vertices: %d</p>", dv);
printf( "\t Duplicated vertices: %d\n",dv);
}
else
{
fprintf(index, "<p> Duplicated vertices: NO</p>");
printf( "\t Duplicated vertices: NO\n");
}
// SELF INTERSECTION
if (m.fn<300000)
{
bool SelfInt=false;
for(f=m.face.begin();f!=m.face.end();++f)
{
for(g=++f , f--;g!=m.face.end();++g)
{
if ((*f).FFp(0)!=&(*g) && (*f).FFp(1)!=&(*g) && (*f).FFp(2)!=&(*g) &&
f->V(0)!=g->V(0) && f->V(0)!=g->V(1) && f->V(0)!=g->V(2) &&
f->V(1)!=g->V(0) && f->V(1)!=g->V(1) && f->V(1)!=g->V(2) &&
f->V(2)!=g->V(0) && f->V(2)!=g->V(1) && f->V(2)!=g->V(2))
{
if (NoDivTriTriIsect(f->V(0)->P(), f->V(1)->P(), f->V(2)->P(),g->V(0)->P(), g->V(1)->P(), g->V(2)->P()) )
SelfInt=true;
}
}
if (SelfInt)
break;
}
if (SelfInt)
{
fprintf(index, "<p> Self Intersection: YES</p>");
printf( "\t Self Intersection: YES\n");
}
else
{
fprintf(index, "<p> Self Intersection: NO</p>");
printf( "\t Self Intersection: NO\n");
}
}
fclose(index);
}