vcglib/apps/sample/trimesh_hole/trimesh_hole.cpp

295 lines
9.4 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#include<vcg/space/triangle3.h>
#include<vcg/complex/complex.h>
#include<vcg/complex/algorithms/hole.h>
#include<vcg/complex/algorithms/local_optimization.h>
#include<vcg/complex/algorithms/local_optimization/tri_edge_flip.h>
#include<vcg/complex/algorithms/smooth.h>
#include<vcg/complex/algorithms/refine.h>
// input output
#include <wrap/io_trimesh/import_ply.h>
#include <wrap/io_trimesh/export_ply.h>
using namespace vcg;
using namespace std;
class MyFace;
class MyVertex;
struct MyUsedTypes : public UsedTypes< Use<MyVertex> ::AsVertexType,
Use<MyFace> ::AsFaceType>{};
class MyVertex : public Vertex< MyUsedTypes, vertex::Coord3f, vertex::BitFlags, vertex::Normal3f, vertex::Mark, vertex::Color4b >{};
class MyFace : public Face < MyUsedTypes, face::VertexRef,face::FFAdj, face::Mark, face::BitFlags, face::Normal3f> {};
class MyMesh : public tri::TriMesh< vector<MyVertex>, vector<MyFace > >{};
//Delaunay
class MyDelaunayFlip: public vcg::tri::TriEdgeFlip< MyMesh, MyDelaunayFlip > {
public:
typedef vcg::tri::TriEdgeFlip< MyMesh, MyDelaunayFlip > TEF;
inline MyDelaunayFlip( const TEF::PosType &p, int i,BaseParameterClass *pp) :TEF(p,i,pp){}
};
bool callback(int percent, const char *str) {
cout << "str: " << str << " " << percent << "%\r";
return true;
}
template <class MESH>
bool NormalTest(typename face::Pos<typename MESH::FaceType> pos)
{
//giro intorno al vertice e controllo le normali
typename MESH::ScalarType thr = 0.0f;
typename MESH::CoordType NdP = vcg::TriangleNormal<typename MESH::FaceType>(*pos.f);
typename MESH::CoordType tmp, oop, soglia = typename MESH::CoordType(thr,thr,thr);
face::Pos<typename MESH::FaceType> aux=pos;
do{
aux.FlipF();
aux.FlipE();
oop = Abs(tmp - ::vcg::TriangleNormal<typename MESH::FaceType>(*pos.f));
if(oop < soglia )return false;
}while(aux != pos && !aux.IsBorder());
return true;
}
int main(int argc,char ** argv){
if(argc<5)
{
printf(
"\n HoleFilling (" __DATE__ ")\n"
"Visual Computing Group I.S.T.I. C.N.R.\n"
"Usage: trimesh_hole #algorithm #size filein.ply fileout.ply \n"
"#algorithm: \n"
" 1) Trivial Ear \n"
" 2) Minimum weight Ear \n"
" 3) Selfintersection Ear \n"
" 4) Minimum weight \n"
);
exit(0);
}
int algorithm = atoi(argv[1]);
int holeSize = atoi(argv[2]);
if(algorithm < 0 && algorithm > 4)
{
printf("Error in algorithm's selection %i\n",algorithm);
exit(0);
}
MyMesh m;
if(tri::io::ImporterPLY<MyMesh>::Open(m,argv[3])!=0)
{
printf("Error reading file %s\n",argv[2]);
exit(0);
}
//update the face-face topology
tri::UpdateTopology<MyMesh>::FaceFace(m);
tri::UpdateNormal<MyMesh>::PerVertexPerFace(m);
tri::UpdateFlags<MyMesh>::FaceBorderFromFF(m);
assert(tri::Clean<MyMesh>::IsFFAdjacencyConsistent(m));
//compute the average of face area
float AVG,sumA=0.0f;
int numA=0,indice;
indice = m.face.size();
MyMesh::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
sumA += DoubleArea(*fi)/2;
numA++;
for(int ind =0;ind<3;++ind)
fi->V(ind)->InitIMark();
}
AVG=sumA/numA;
//tri::Hole<MyMesh> holeFiller;
switch(algorithm)
{
case 1: tri::Hole<MyMesh>::EarCuttingFill<tri::TrivialEar<MyMesh> >(m,holeSize,false); break;
case 2: tri::Hole<MyMesh>::EarCuttingFill<tri::MinimumWeightEar< MyMesh> >(m,holeSize,false,callback); break;
case 3: tri::Hole<MyMesh>::EarCuttingIntersectionFill<tri::SelfIntersectionEar< MyMesh> >(m,holeSize,false); break;
case 4: tri::Hole<MyMesh>::MinimumWeightFill(m,holeSize, false); tri::UpdateTopology<MyMesh>::FaceFace(m); break;
}
tri::UpdateFlags<MyMesh>::FaceBorderFromFF(m);
assert(tri::Clean<MyMesh>::IsFFAdjacencyConsistent(m));
printf("\nStart refinig...\n");
/*start refining */
MyMesh::VertexIterator vi;
MyMesh::FaceIterator f;
std::vector<MyMesh::FacePointer> vf;
f = m.face.begin();
f += indice;
for(; f != m.face.end();++f)
{
if(!f->IsD())
{
f->SetS();
}
}
std::vector<MyMesh::FacePointer *> FPP;
std::vector<MyMesh::FacePointer> added;
std::vector<MyMesh::FacePointer>::iterator vfit;
int i=1;
printf("\n");
for(f = m.face.begin();f!=m.face.end();++f) if(!(*f).IsD())
{
if( f->IsS() )
{
f->V(0)->IsW();
f->V(1)->IsW();
f->V(2)->IsW();
}
else
{
f->V(0)->ClearW();
f->V(1)->ClearW();
f->V(2)->ClearW();
}
}
BaseParameterClass pp;
vcg::LocalOptimization<MyMesh> Fs(m,&pp);
Fs.SetTargetMetric(0.0f);
Fs.Init<MyDelaunayFlip >();
Fs.DoOptimization();
do
{
vf.clear();
f = m.face.begin();
f += indice;
for(; f != m.face.end();++f)
{
if(f->IsS())
{
bool test= true;
for(int ind =0;ind<3;++ind)
f->V(ind)->InitIMark();
test = (DoubleArea<MyMesh::FaceType>(*f)/2) > AVG;
if(test)
{
vf.push_back(&(*f));
}
}
}
//info print
printf("\r Refining [%d] - > %d",i,int(vf.size()));
i++;
FPP.clear();
added.clear();
for(vfit = vf.begin(); vfit!=vf.end();++vfit)
{
FPP.push_back(&(*vfit));
}
int toadd= vf.size();
MyMesh::FaceIterator f1,f2;
f2 = tri::Allocator<MyMesh>::AddFaces(m,(toadd*2),FPP);
MyMesh::VertexIterator vertp = tri::Allocator<MyMesh>::AddVertices(m,toadd);
std::vector<MyMesh::FacePointer> added;
added.reserve(toadd);
vfit=vf.begin();
for(int i = 0; i<toadd;++i,f2++,vertp++)
{
f1=f2;
f2++;
TriSplit<MyMesh,CenterPointBarycenter<MyMesh> >::Apply(vf[i],&(*f1),&(*f2),&(*vertp),CenterPointBarycenter<MyMesh>() );
f1->SetS();
f2->SetS();
for(int itr=0;itr<3;itr++)
{
f1->V(itr)->SetW();
f2->V(itr)->SetW();
}
added.push_back( &(*f1) );
added.push_back( &(*f2) );
}
BaseParameterClass pp;
vcg::LocalOptimization<MyMesh> FlippingSession(m,&pp);
FlippingSession.SetTargetMetric(0.0f);
FlippingSession.Init<MyDelaunayFlip >();
FlippingSession.DoOptimization();
}while(!vf.empty());
vcg::LocalOptimization<MyMesh> Fiss(m,&pp);
Fiss.SetTargetMetric(0.0f);
Fiss.Init<MyDelaunayFlip >();
Fiss.DoOptimization();
/*end refining */
tri::io::ExporterPLY<MyMesh>::Save(m,"PreSmooth.ply",false);
int UBIT = MyMesh::VertexType::NewBitFlag();
f = m.face.begin();
f += indice;
for(; f != m.face.end();++f)
{
if(f->IsS())
{
for(int ind =0;ind<3;++ind){
if(NormalTest<MyMesh>(face::Pos<MyMesh::FaceType>(&(*f),ind )))
{
f->V(ind)->SetUserBit(UBIT);
}
}
f->ClearS();
}
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
{
if( vi->IsUserBit(UBIT) )
{
(*vi).SetS();
vi->ClearUserBit(UBIT);
}
}
tri::Smooth<MyMesh>::VertexCoordLaplacian(m,1,true);
printf("\nCompleted. Saving....\n");
tri::io::ExporterPLY<MyMesh>::Save(m,argv[4],false);
return 0;
}