vcglib/vcg/space/index/space_iterators.h

541 lines
14 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2006 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.25 2007/03/08 17:05:50 pietroni
line 375, corrected 1 error concerning intersection with bounding of the grid
Revision 1.24 2007/02/20 16:22:50 ganovelli
modif in ClosestIterator to include the last shell Si.siz [X|Y|X]. Tested with minialign and point based animation
Revision 1.23 2006/12/06 12:53:14 pietroni
changed 1 wrong comment RayIterator---- Refresh .. was the opposite
Revision 1.22 2006/10/26 08:28:50 pietroni
corrected 1 bug in operator ++ of closest iterator
Revision 1.21 2006/10/25 15:59:29 pietroni
corrected bug in closest iterator.. if doesn't find any alement at first cells examinated continue until find some element
Revision 1.20 2006/10/25 09:47:53 pietroni
added max dist control and constructor
Revision 1.19 2006/10/02 07:47:57 cignoni
Reverted to version 1.14 to nullify dangerous marfr960's changes
Revision 1.14 2006/06/01 20:53:56 cignoni
added missing header
****************************************************************************/
#ifndef __VCGLIB_SPATIAL_ITERATORS
#define __VCGLIB_SPATIAL_ITERATORS
#include <vector>
#include <vcg/space/intersection3.h>
#include <vcg/space/point3.h>
#include <vcg/space/box3.h>
#include <vcg/space/ray3.h>
#include <vcg/math/base.h>
#include <algorithm>
#include <float.h>
#include <limits>
namespace vcg{
template <class Spatial_Idexing,class INTFUNCTOR,class TMARKER>
class RayIterator
{
public:
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Ray3<ScalarType> RayType;
typedef typename Spatial_Idexing::Box3x IndexingBoxType;
protected:
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
ScalarType max_dist;
///control right bonding current cell index (only on initialization)
void _ControlLimits()
{
for (int i=0;i<3;i++)
{
vcg::Point3i dim=Si.siz;
if (CurrentCell.V(i)<0)
CurrentCell.V(i) = 0;
else
if (CurrentCell.V(i)>=dim.V(i))
CurrentCell.V(i)=dim.V(i)-1;
}
}
///find initial line parameters
void _FindLinePar()
{
/* Punti goal */
///da verificare se vanno oltre ai limiti
vcg::Point3i ip;
Si.PToIP(start,ip);
Si.IPiToPf(ip,goal);
for (int i=0;i<3;i++)
if(r.Direction().V(i)>0.0)
goal.V(i)+=Si.voxel.V(i);
ScalarType gx=goal.X();
ScalarType gy=goal.Y();
ScalarType gz=goal.Z();
dist=(r.Origin()-goal).Norm();
const float LocalMaxScalar = (std::numeric_limits<float>::max)();
const float EPSILON = 1e-50f;
/* Parametri della linea */
ScalarType tx,ty,tz;
if( fabs(r.Direction().X())>EPSILON )
tx = (gx-r.Origin().X())/r.Direction().X();
else
tx =LocalMaxScalar;
if( fabs(r.Direction().Y())>EPSILON )
ty = (gy-r.Origin().Y())/r.Direction().Y();
else
ty =LocalMaxScalar;
if( fabs(r.Direction().Z())>EPSILON )
tz = (gz-r.Origin().Z())/r.Direction().Z();
else
tz =LocalMaxScalar;
t=CoordType(tx,ty,tz);
}
bool _controlEnd()
{
return (((CurrentCell.X()<0)||(CurrentCell.Y()<0)||(CurrentCell.Z()<0))||
((CurrentCell.X()>=Si.siz.X())||(CurrentCell.Y()>=Si.siz.Y())||(CurrentCell.Z()>=Si.siz.Z())));
}
void _NextCell()
{
assert(!end);
vcg::Box3<ScalarType> bb_current;
Si.IPiToPf(CurrentCell,bb_current.min);
Si.IPiToPf(CurrentCell+vcg::Point3i(1,1,1),bb_current.max);
CoordType inters;
Intersection_Ray_Box(bb_current,r,inters);
ScalarType testmax_dist=(inters-r.Origin()).Norm();
if (testmax_dist>max_dist)
end=true;
else
{
if( t.X()<t.Y() && t.X()<t.Z() )
{
if(r.Direction().X()<0.0)
{goal.X() -= Si.voxel.X(); --CurrentCell.X();}
else
{goal.X() += Si.voxel.X(); ++CurrentCell.X();}
t.X() = (goal.X()-r.Origin().X())/r.Direction().X();
}
else if( t.Y()<t.Z() ){
if(r.Direction().Y()<0.0)
{goal.Y() -= Si.voxel.Y(); --CurrentCell.Y();}
else
{goal.Y() += Si.voxel.Y(); ++CurrentCell.Y();}
t.Y() = (goal.Y()-r.Origin().Y())/r.Direction().Y();
} else {
if(r.Direction().Z()<0.0)
{ goal.Z() -= Si.voxel.Z(); --CurrentCell.Z();}
else
{ goal.Z() += Si.voxel.Z(); ++CurrentCell.Z();}
t.Z() = (goal.Z()-r.Origin().Z())/r.Direction().Z();
}
dist=(r.Origin()-goal).Norm();
end=_controlEnd();
}
}
public:
///contructor
RayIterator(Spatial_Idexing &_Si,
INTFUNCTOR _int_funct
,const ScalarType &_max_dist)
:Si(_Si),int_funct(_int_funct)
{
max_dist=_max_dist;
};
void SetMarker(TMARKER _tm)
{
tm=_tm;
}
void Init(const RayType _r)
{
r=_r;
end=false;
tm.UnMarkAll();
Elems.clear();
//CoordType ip;
//control if intersect the bounding box of the mesh
if (Si.bbox.IsIn(r.Origin()))
start=r.Origin();
else
if (!(vcg::Intersection_Ray_Box<ScalarType>(Si.bbox,r,start))){
end=true;
return;
}
Si.PToIP(start,CurrentCell);
_ControlLimits();
_FindLinePar();
//go to first intersection
while ((!End())&& Refresh())
_NextCell();
}
bool End()
{return end;}
///refresh current cell intersection , return false if there are
///at lest 1 intersection
bool Refresh()
{
//Elems.clear();
typename Spatial_Idexing::CellIterator first,last,l;
///take first, last iterators to elements in the cell
Si.Grid(CurrentCell.X(),CurrentCell.Y(),CurrentCell.Z(),first,last);
for(l=first;l!=last;++l)
{
ObjType* elem=&(*(*l));
ScalarType t;
CoordType Int;
if((!elem->IsD())&&(!tm.IsMarked(elem))&&(int_funct((**l),r,t))&&(t<=max_dist))
{
Int=r.Origin()+r.Direction()*t;
Elems.push_back(Entry_Type(elem,t,Int));
tm.Mark(elem);
}
}
////then control if there are more than 1 element
std::sort(Elems.begin(),Elems.end());
CurrentElem=Elems.rbegin();
return((Elems.size()==0)||(Dist()>dist));
}
void operator ++()
{
if (!Elems.empty()) Elems.pop_back();
CurrentElem = Elems.rbegin();
if (Dist()>dist)
{
if (!End())
{
_NextCell();
while ((!End())&&Refresh())
_NextCell();
}
}
}
ObjType &operator *(){return *((*CurrentElem).elem);}
CoordType IntPoint()
{return ((*CurrentElem).intersection);}
ScalarType Dist()
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
}
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
protected:
///structure that mantain for the current cell pre-calculated data
struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
RayType r; //ray to find intersections
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
INTFUNCTOR &int_funct;
TMARKER tm;
std::vector<Entry_Type> Elems; //element loaded from curren cell
typedef typename std::vector<Entry_Type>::reverse_iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
vcg::Point3i CurrentCell; //current cell
//used for raterization
CoordType start;
CoordType goal;
ScalarType dist;
CoordType t;
};
template <class Spatial_Idexing,class DISTFUNCTOR,class TMARKER>
class ClosestIterator
{
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
///control the end of scanning
bool _EndGrid()
{
if ((explored.min==vcg::Point3i(0,0,0))&&(explored.max==Si.siz))
end =true;
return end;
}
void _UpdateRadius()
{
if (radius>=max_dist)
end=true;
radius+=step_size;
//control bounds
if (radius>max_dist)
radius=max_dist;
}
///add cell to the curren set of explored cells
bool _NextShell()
{
//then expand the box
explored=to_explore;
_UpdateRadius();
Box3<ScalarType> b3d(p,radius);
Si.BoxToIBox(b3d,to_explore);
Box3i ibox(Point3i(0,0,0),Si.siz-Point3i(1,1,1));
to_explore.Intersect(ibox);
if (!to_explore.IsNull())
{
assert(!( to_explore.min.X()<0 || to_explore.max.X()>=Si.siz[0] ||
to_explore.min.Y()<0 || to_explore.max.Y()>=Si.siz[1] || to_explore.min.Z()<0
|| to_explore.max.Z()>=Si.siz[2] ));
return true;
}
return false;
}
public:
///contructor
ClosestIterator(Spatial_Idexing &_Si,DISTFUNCTOR _dist_funct):Si(_Si),dist_funct(_dist_funct){}
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
void SetMarker(TMARKER _tm)
{
tm=_tm;
}
///initialize the Iterator
void Init(CoordType _p,const ScalarType &_max_dist)
{
explored.SetNull();
to_explore.SetNull();
p=_p;
max_dist=_max_dist;
Elems.clear();
end=false;
tm.UnMarkAll();
//step_size=Si.voxel.X();
step_size=Si.voxel.Norm();
radius=0;
///inflate the bbox until find a valid bbox
while ((!_NextShell())&&(!End())) {}
while ((!End())&& Refresh()&&(!_EndGrid()))
_NextShell();
}
//return true if the scan is complete
bool End()
{return end;}
///refresh Object found also considering current shere radius,
//and object comes from previos that are already in the stack
//return false if no elements find
bool Refresh()
{
int ix,iy,iz;
for( iz = to_explore.min.Z();iz <= to_explore.max.Z(); ++iz)
for(iy =to_explore.min.Y(); iy <=to_explore.max.Y(); ++iy)
for(ix =to_explore.min.X(); ix <= to_explore.max.X();++ix)
{
// this test is to avoid to re-process already analyzed cells.
if((explored.IsNull())||
(ix<explored.min[0] || ix>explored.max[0] ||
iy<explored.min[1] || iy>explored.max[1] ||
iz<explored.min[2] || iz>explored.max[2] ))
{
typename Spatial_Idexing::CellIterator first,last,l;
Si.Grid(ix,iy,iz,first,last);
for(l=first;l!=last;++l)
{
ObjType *elem=&(**l);
if (!tm.IsMarked(elem))
{
CoordType nearest;
ScalarType dist=max_dist;
if (dist_funct((**l),p,dist,nearest))
Elems.push_back(Entry_Type(elem,fabs(dist),nearest));
tm.Mark(elem);
}
}
}
}
////sort the elements in Elems and take a iterator to the last one
std::sort(Elems.begin(),Elems.end());
CurrentElem=Elems.rbegin();
return((Elems.size()==0)||(Dist()>radius));
}
bool ToUpdate()
{return ((Elems.size()==0)||(Dist()>radius));}
void operator ++()
{
if (!Elems.empty()) Elems.pop_back();
CurrentElem = Elems.rbegin();
if ((!End())&& ToUpdate())
do{_NextShell();}
while (Refresh()&&(!_EndGrid()));
}
ObjType &operator *(){return *((*CurrentElem).elem);}
//return distance of the element form the point if no element
//are in the vector then return max dinstance
ScalarType Dist()
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
}
CoordType NearestPoint()
{return ((*CurrentElem).intersection);}
protected:
///structure that mantain for the current cell pre-calculated data
struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
inline bool operator == ( const Entry_Type & l ) const{return (elem == l.elem); }
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
CoordType p; //initial point
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
ScalarType max_dist; //max distance when the scan terminate
vcg::Box3i explored; //current bounding box explored
vcg::Box3i to_explore; //current bounding box explored
ScalarType radius; //curret radius for sphere expansion
ScalarType step_size; //radius step
std::vector<Entry_Type> Elems; //element loaded from the current sphere
DISTFUNCTOR &dist_funct;
TMARKER tm;
typedef typename std::vector<Entry_Type>::reverse_iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
};
}
#endif