vcglib/vcg/simplex/vertex/component.h

506 lines
21 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_VERTEX_PLUS_COMPONENT
#define __VCG_VERTEX_PLUS_COMPONENT
#include <vector>
#include <string>
#include <vcg/space/point3.h>
#include <vcg/space/texcoord2.h>
#include <vcg/space/color4.h>
namespace vcg {
namespace vertex {
/*
Some naming Rules
All the Components that can be added to a vertex should be defined in the namespace vert:
*/
/*-------------------------- Curvature ----------------------------------*/
template <class S>
struct CurvatureDirBaseType{
typedef Point3<S> VecType;
typedef S ScalarType;
CurvatureDirBaseType () {}
Point3<S>max_dir,min_dir; // max and min curvature direction
S k1,k2;// max and min curvature values
};
template <class A, class TT> class Curvature: public TT {
public:
typedef Point2<A> CurvatureType;
typedef typename CurvatureType::ScalarType ScalarType;
ScalarType &Kh(){ return _hk[0];}
ScalarType &Kg(){ return _hk[1];}
const ScalarType &cKh() const { return _hk[0];}
const ScalarType &cKg() const { return _hk[1];}
static bool HasCurvature() { return true; }
static bool IsCurvatureEnabled(typename TT::VertexType *) { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Curvature"));TT::Name(name);}
private:
Point2<A> _hk;
};
template <class T> class Curvaturef: public Curvature< float, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Curvaturef"));T::Name(name);}
};
template <class T> class Curvatured: public Curvature<double , T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Curvatured"));T::Name(name);}
};
/*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/
template <class TT> class EmptyCore: public TT {
public:
typedef int FlagType;
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
int Flags() const { return 0; }
static bool HasFlags() { return false; }
typedef vcg::Point3f CoordType;
typedef CoordType::ScalarType ScalarType;
CoordType &P() { static CoordType coord(0, 0, 0); return coord; }
const CoordType &P() const { static CoordType coord(0, 0, 0); assert(0); return coord; }
const CoordType &cP() const { static CoordType coord(0, 0, 0); assert(0); return coord; }
static bool HasCoord() { return false; }
typedef vcg::Point3s NormalType;
NormalType &N() { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; }
const NormalType cN()const { static NormalType dummy_normal(0, 0, 0); assert(0); return dummy_normal; }
static bool HasNormal() { return false; }
static bool HasNormalOcf() { return false; }
typedef float QualityType;
QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
const QualityType &cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
static bool HasQuality() { return false; }
static bool HasQualityOcf() { return false; }
static bool IsQualityEnabled(const typename TT::VertexType *) { return false; }
typedef vcg::Color4b ColorType;
ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
const ColorType &cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
static bool HasColor() { return false; }
static bool HasColorOcf() { return false; }
static bool IsColorEnabled(const typename TT::VertexType *) { return false; }
inline void InitIMark() { }
inline const int & cIMark() const { assert(0); static int tmp=-1; return tmp;}
inline int & IMark() { assert(0); static int tmp=-1; return tmp;}
inline int IMark() const {return 0;}
static bool HasMark() { return false; }
static bool HasMarkOcf() { return false; }
static bool IsMarkEnabled(const typename TT::VertexType *) { return false; }
typedef ScalarType RadiusType;
RadiusType &R(){ static ScalarType v = 0.0; assert(0 && "the radius component is not available"); return v; }
const RadiusType &cR() const { static const ScalarType v = 0.0; assert(0 && "the radius component is not available"); return v; }
static bool HasRadius() { return false; }
static bool HasRadiusOcf() { return false; }
static bool IsRadiusEnabled(const typename TT::VertexType *) { return false; }
typedef vcg::TexCoord2<float,1> TexCoordType;
TexCoordType &T() { static TexCoordType dummy_texcoord; assert(0); return dummy_texcoord; }
const TexCoordType &cT() const { static TexCoordType dummy_texcoord; assert(0); return dummy_texcoord; }
static bool HasTexCoord() { return false; }
static bool IsTexCoordEnabled(const typename TT::VertexType *) { return false; }
typename TT::TetraPointer &VTp() { static typename TT::TetraPointer tp = 0; assert(0); return tp; }
const typename TT::TetraPointer cVTp()const { static typename TT::TetraPointer tp = 0; assert(0); return tp; }
int &VTi() { static int z = 0; return z; };
static bool HasVTAdjacency() { return false; }
typename TT::FacePointer &VFp() { static typename TT::FacePointer fp=0; assert(0); return fp; }
const typename TT::FacePointer cVFp() const { static typename TT::FacePointer fp=0; assert(0); return fp; }
int &VFi(){static int z=0; return z;};
int cVFi() const {static int z=0; return z;};
static bool HasVFAdjacency() { return false; }
typename TT::EdgePointer &VEp() { static typename TT::EdgePointer ep=0; assert(0); return ep; }
const typename TT::EdgePointer cVEp() const { static typename TT::EdgePointer ep=0; assert(0); return ep; }
int &VEi(){static int z=0; return z;};
static bool HasVEAdjacency() { return false; }
typename TT::HEdgePointer &VHp() { static typename TT::HEdgePointer ep=0; assert(0); return ep; }
const typename TT::HEdgePointer cVHp() const { static typename TT::HEdgePointer ep=0; assert(0); return ep; }
int &VHi(){static int z=0; return z;};
static bool HasVHAdjacency() { return false; }
typedef Point3f VecType;
typedef Point2f CurvatureType;
float &Kh() { static float dummy = 0.f; assert(0);return dummy;}
float &Kg() { static float dummy = 0.f; assert(0);return dummy;}
const float &cKh() const { static float dummy = 0.f; assert(0); return dummy;}
const float &cKg() const { static float dummy = 0.f; assert(0); return dummy;}
typedef CurvatureDirBaseType<float> CurvatureDirType;
VecType &PD1(){static VecType v(0,0,0); assert(0);return v;}
VecType &PD2(){static VecType v(0,0,0); assert(0);return v;}
const VecType &cPD1() const {static VecType v(0,0,0); assert(0);return v;}
const VecType &cPD2() const {static VecType v(0,0,0); assert(0);return v;}
ScalarType &K1(){ static ScalarType v = 0.0;assert(0);return v;}
ScalarType &K2(){ static ScalarType v = 0.0;assert(0);return v;}
const ScalarType &cK1() const {static ScalarType v = 0.0;assert(0);return v;}
const ScalarType &cK2()const {static ScalarType v = 0.0;assert(0);return v;}
static bool HasCurvature() { return false; }
static bool IsCurvatureEnabled(const typename TT::VertexType *) { return false; }
static bool HasCurvatureDir() { return false; }
static bool IsCurvatureDirEnabled(const typename TT::VertexType *) { return false; }
template < class LeftV>
void ImportData(const LeftV & /*left*/ ) {
// TT::ImportData( left);
}
static void Name(std::vector<std::string> & name){TT::Name(name);}
};
/*-------------------------- COORD ----------------------------------------*/
template <class A, class T> class Coord: public T {
public:
typedef A CoordType;
typedef typename A::ScalarType ScalarType;
CoordType &P() { return _coord; }
const CoordType &P() const { return _coord; }
const CoordType &cP() const { return _coord; }
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasCoord()) P().Import(left.cP()); T::ImportData( left); }
static bool HasCoord() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Coord"));T::Name(name);}
private:
CoordType _coord;
};
template <class T> class Coord3f: public Coord<vcg::Point3f, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Coord3f"));T::Name(name);}
};
template <class T> class Coord3d: public Coord<vcg::Point3d, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Coord3d"));T::Name(name);}
};
/*-------------------------- NORMAL ----------------------------------------*/
template <class A, class T> class Normal: public T {
public:
typedef A NormalType;
NormalType &N() { return _norm; }
const NormalType &cN() const { return _norm; }
template < class LeftV>
void ImportData(const LeftV & left ){
if(LeftV::HasNormal())
N().Import(left.cN());
T::ImportData( left);
}
static bool HasNormal() { return true; }
// static bool HasNormalOcf() { return false; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal"));T::Name(name);}
private:
NormalType _norm;
};
template <class T> class Normal3s: public Normal<vcg::Point3s, T> {
public:static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3s"));T::Name(name);}
};
template <class T> class Normal3f: public Normal<vcg::Point3f, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3f"));T::Name(name);}
};
template <class T> class Normal3d: public Normal<vcg::Point3d, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3d"));T::Name(name);}
};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
template <class T> class Mark: public T {
public:
static bool HasMark() { return true; }
static bool HasMarkOcc() { return true; }
inline void InitIMark() { _imark = 0; }
inline const int & cIMark() const { return _imark;}
inline int & IMark() { return _imark;}
inline const int & IMark() const {return _imark;}
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasMark()) IMark() = left.IMark(); T::ImportData( left); }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
/*-------------------------- TEXCOORD ----------------------------------------*/
template <class A, class TT> class TexCoord: public TT {
public:
typedef A TexCoordType;
TexCoordType &T() { return _t; }
const TexCoordType &cT() const { return _t; }
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasTexCoord()) T() = left.cT(); TT::ImportData( left); }
static bool HasTexCoord() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("TexCoord"));TT::Name(name);}
private:
TexCoordType _t;
};
template <class TT> class TexCoord2s: public TexCoord<TexCoord2<short,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("TexCoord2s"));TT::Name(name);}
};
template <class TT> class TexCoord2f: public TexCoord<TexCoord2<float,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("TexCoord2f"));TT::Name(name);}
};
template <class TT> class TexCoord2d: public TexCoord<TexCoord2<double,1>, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("TexCoord2d"));TT::Name(name);}
};
/*------------------------- FLAGS -----------------------------------------*/
template <class T> class BitFlags: public T {
public:
BitFlags(){_flags=0;}
typedef int FlagType;
int &Flags() {return _flags; }
int Flags() const {return _flags; }
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasFlags()) Flags() = left.Flags(); T::ImportData( left); }
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*-------------------------- Color ----------------------------------*/
template <class A, class T> class Color: public T {
public:
Color():_color(vcg::Color4b::White) {}
typedef A ColorType;
ColorType &C() { return _color; }
const ColorType &C() const { return _color; }
const ColorType &cC() const { return _color; }
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasColor()) C() = left.cC(); T::ImportData( left); }
static bool HasColor() { return true; }
static bool IsColorEnabled(typename T::VertexType *) { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}
private:
ColorType _color;
};
template <class TT> class Color4b: public Color<vcg::Color4b, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));TT::Name(name);}
};
/*-------------------------- Quality ----------------------------------*/
template <class A, class TT> class Quality: public TT {
public:
typedef A QualityType;
QualityType &Q() { return _quality; }
const QualityType & cQ() const {return _quality; }
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasQuality()) Q() = left.cQ(); TT::ImportData( left); }
static bool HasQuality() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));TT::Name(name);}
private:
QualityType _quality;
};
template <class TT> class Qualitys: public Quality<short, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));TT::Name(name);}
};
template <class TT> class Qualityf: public Quality<float, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));TT::Name(name);}
};
template <class TT> class Qualityd: public Quality<double, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));TT::Name(name);}
};
/*-------------------------- Curvature Direction ----------------------------------*/
template <class TT> class EmptyCurvatureDir: public TT {
public:
typedef CurvatureDirBaseType<float> CurvatureDirType;
Point3f &PD1(){static Point3f dummy(0,0,0); return dummy;}
Point3f &PD2(){static Point3f dummy(0,0,0); return dummy;}
const Point3f &cPD1() const {static Point3f dummy(0,0,0); return dummy;}
const Point3f &cPD2()const {static Point3f dummy(0,0,0); return dummy;}
float &K1(){ static float dummy(0);assert(0);return dummy;}
float &K2(){ static float dummy(0);assert(0);return dummy;}
const float &cK1()const { static float dummy(0);assert(0);return dummy;}
const float &cK2()const { static float dummy(0);assert(0);return dummy;}
static bool HasCurvatureDir() { return false; }
template < class LeftV>
void ImportData(const LeftV & left ) { TT::ImportData( left); }
static void Name(std::vector<std::string> & name){TT::Name(name);}
};
template <class A, class TT> class CurvatureDir: public TT {
public:
typedef A CurvatureDirType;
typedef typename CurvatureDirType::VecType VecType;
typedef typename CurvatureDirType::ScalarType ScalarType;
VecType &PD1(){ return _curv.max_dir;}
VecType &PD2(){ return _curv.min_dir;}
const VecType &cPD1() const {return _curv.max_dir;}
const VecType &cPD2() const {return _curv.min_dir;}
ScalarType &K1(){ return _curv.k1;}
ScalarType &K2(){ return _curv.k2;}
const ScalarType &cK1() const {return _curv.k1;}
const ScalarType &cK2()const {return _curv.k2;}
static bool HasCurvatureDir() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDir"));TT::Name(name);}
private:
CurvatureDirType _curv;
};
template <class T> class CurvatureDirf: public CurvatureDir<CurvatureDirBaseType<float>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirf"));T::Name(name);}
};
template <class T> class CurvatureDird: public CurvatureDir<CurvatureDirBaseType<double>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDird"));T::Name(name);}
};
/*-------------------------- Radius ----------------------------------*/
template <class A, class TT> class Radius: public TT {
public:
typedef A RadiusType;
RadiusType &R() { return _radius; }
const RadiusType & cR() const {return _radius; }
template < class LeftV>
void ImportData(const LeftV & left ) { if(LeftV::HasRadius()) R() = left.cR(); TT::ImportData( left); }
static bool HasRadius() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Radius"));TT::Name(name);}
private:
RadiusType _radius;
};
template <class TT> class Radiusf: public Radius<float, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Radiusf"));TT::Name(name);}
};
/*----------------------------- VEADJ ------------------------------*/
template <class T> class VEAdj: public T {
public:
VEAdj(){_ep=0;}
typename T::EdgePointer &VEp() {return _ep; }
typename T::EdgePointer const cVEp() const {return _ep; }
int &VEi() {return _zp; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasVEAdjacency() { return true; }
static bool HasVEAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VEAdj"));T::Name(name);}
private:
typename T::EdgePointer _ep ;
int _zp ;
};
/*----------------------------- VFADJ ------------------------------*/
template <class T> class VFAdj: public T {
public:
VFAdj(){_fp=0;}
typename T::FacePointer &VFp() {return _fp; }
typename T::FacePointer const cVFp() const {return _fp; }
int &VFi() {return _zp; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasVFAdjacency() { return true; }
static bool HasVFAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VFAdj"));T::Name(name);}
private:
typename T::FacePointer _fp ;
int _zp ;
};
/*----------------------------- VHADJ ------------------------------*/
template <class T> class VHAdj: public T {
public:
VHAdj(){_hp=0;}
typename T::HEdgePointer &VHp() {return _hp; }
typename T::HEdgePointer cVHp() {return _hp; }
int &VHi() {return _zp; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasVHAdjacency() { return true; }
static bool HasVHAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VHAdj"));T::Name(name);}
private:
typename T::HEdgePointer _hp ;
int _zp ;
};
/*----------------------------- VTADJ ------------------------------*/
template <class T> class VTAdj: public T {
public:
VTAdj() { _tp = 0; }
typename T::TetraPointer &VTp() { return _tp; }
typename T::TetraPointer cVTp() { return _tp; }
int &VTi() {return _zp; }
static bool HasVTAdjacency() { return true; }
static bool HasVTAdjacencyOcc() { return true; }
static void Name( std::vector< std::string > & name ) { name.push_back( std::string("VTAdj") ); T::Name(name); }
private:
typename T::TetraPointer _tp ;
int _zp ;
};
} // end namespace vert
}// end namespace vcg
#endif