1379 lines
40 KiB
C++
1379 lines
40 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
|
||
|
||
#ifndef __VCGLIB__SMOOTH
|
||
#define __VCGLIB__SMOOTH
|
||
|
||
#include <cmath>
|
||
#include <wrap/callback.h>
|
||
#include <vcg/space/point3.h>
|
||
#include <vcg/space/ray3.h>
|
||
#include <vcg/container/simple_temporary_data.h>
|
||
#include <vcg/complex/algorithms/update/normal.h>
|
||
#include <vcg/complex/algorithms/update/halfedge_topology.h>
|
||
#include <vcg/complex/algorithms/closest.h>
|
||
#include <vcg/space/index/kdtree/kdtree.h>
|
||
|
||
|
||
namespace vcg
|
||
{
|
||
namespace tri
|
||
{
|
||
///
|
||
/** \addtogroup trimesh */
|
||
/*@{*/
|
||
/// Class of static functions to smooth and fair meshes and their attributes.
|
||
|
||
template <class SmoothMeshType>
|
||
class Smooth
|
||
{
|
||
|
||
public:
|
||
typedef SmoothMeshType MeshType;
|
||
typedef typename MeshType::VertexType VertexType;
|
||
typedef typename MeshType::VertexType::CoordType CoordType;
|
||
typedef typename MeshType::VertexPointer VertexPointer;
|
||
typedef typename MeshType::VertexIterator VertexIterator;
|
||
typedef typename MeshType::ScalarType ScalarType;
|
||
typedef typename MeshType::FaceType FaceType;
|
||
typedef typename MeshType::FacePointer FacePointer;
|
||
typedef typename MeshType::FaceIterator FaceIterator;
|
||
typedef typename MeshType::FaceContainer FaceContainer;
|
||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||
typedef typename vcg::face::VFIterator<FaceType> VFLocalIterator;
|
||
|
||
class ScaleLaplacianInfo
|
||
{
|
||
public:
|
||
CoordType PntSum;
|
||
ScalarType LenSum;
|
||
};
|
||
|
||
// This is precisely what curvature flow does.
|
||
// Curvature flow smoothes the surface by moving along the surface
|
||
// normal n with a speed equal to the mean curvature
|
||
void VertexCoordLaplacianCurvatureFlow(MeshType &/*m*/, int /*step*/, ScalarType /*delta*/)
|
||
{
|
||
|
||
}
|
||
|
||
// Another Laplacian smoothing variant,
|
||
// here we sum the baricenter of the faces incidents on each vertex weighting them with the angle
|
||
|
||
static void VertexCoordLaplacianAngleWeighted(MeshType &m, int step, ScalarType delta)
|
||
{
|
||
ScaleLaplacianInfo lpz;
|
||
lpz.PntSum=CoordType(0,0,0);
|
||
lpz.LenSum=0;
|
||
SimpleTempData<typename MeshType::VertContainer, ScaleLaplacianInfo > TD(m.vert,lpz);
|
||
FaceIterator fi;
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
TD[*vi]=lpz;
|
||
ScalarType a[3];
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
|
||
{
|
||
CoordType mp=((*fi).V(0)->P() + (*fi).V(1)->P() + (*fi).V(2)->P())/3.0;
|
||
CoordType e0=((*fi).V(0)->P() - (*fi).V(1)->P()).Normalize();
|
||
CoordType e1=((*fi).V(1)->P() - (*fi).V(2)->P()).Normalize();
|
||
CoordType e2=((*fi).V(2)->P() - (*fi).V(0)->P()).Normalize();
|
||
|
||
a[0]=AngleN(-e0,e2);
|
||
a[1]=AngleN(-e1,e0);
|
||
a[2]=AngleN(-e2,e1);
|
||
//assert(fabs(M_PI -a[0] -a[1] -a[2])<0.0000001);
|
||
|
||
for(int j=0;j<3;++j){
|
||
CoordType dir= (mp-(*fi).V(j)->P()).Normalize();
|
||
TD[(*fi).V(j)].PntSum+=dir*a[j];
|
||
TD[(*fi).V(j)].LenSum+=a[j]; // well, it should be named angleSum
|
||
}
|
||
}
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].LenSum>0 )
|
||
(*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum ) * delta;
|
||
|
||
}
|
||
};
|
||
|
||
// Scale dependent laplacian smoothing [Fujiwara 95]
|
||
// as described in
|
||
// Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
|
||
// Mathieu Desbrun, Mark Meyer, Peter Schroeder, Alan H. Barr
|
||
// SIGGRAPH 99
|
||
// REQUIREMENTS: Border Flags.
|
||
//
|
||
// Note the delta parameter is in a absolute unit
|
||
// to get stability it should be a small percentage of the shortest edge.
|
||
|
||
static void VertexCoordScaleDependentLaplacian_Fujiwara(MeshType &m, int step, ScalarType delta)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer, ScaleLaplacianInfo > TD(m.vert);
|
||
ScaleLaplacianInfo lpz;
|
||
lpz.PntSum=CoordType(0,0,0);
|
||
lpz.LenSum=0;
|
||
FaceIterator fi;
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
TD[*vi]=lpz;
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j)) {
|
||
CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P();
|
||
ScalarType len=Norm(edge);
|
||
edge/=len;
|
||
TD[(*fi).V(j)].PntSum+=edge;
|
||
TD[(*fi).V1(j)].PntSum-=edge;
|
||
TD[(*fi).V(j)].LenSum+=len;
|
||
TD[(*fi).V1(j)].LenSum+=len;
|
||
}
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
// se l'edge j e' di bordo si riazzera tutto e si riparte
|
||
if((*fi).IsB(j)) {
|
||
TD[(*fi).V(j)].PntSum=CoordType(0,0,0);
|
||
TD[(*fi).V1(j)].PntSum=CoordType(0,0,0);
|
||
TD[(*fi).V(j)].LenSum=0;
|
||
TD[(*fi).V1(j)].LenSum=0;
|
||
}
|
||
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P();
|
||
ScalarType len=Norm(edge);
|
||
edge/=len;
|
||
TD[(*fi).V(j)].PntSum+=edge;
|
||
TD[(*fi).V1(j)].PntSum-=edge;
|
||
TD[(*fi).V(j)].LenSum+=len;
|
||
TD[(*fi).V1(j)].LenSum+=len;
|
||
}
|
||
// The fundamental part:
|
||
// We move the new point of a quantity
|
||
//
|
||
// L(M) = 1/Sum(edgelen) * Sum(Normalized edges)
|
||
//
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].LenSum>0 )
|
||
(*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum)*delta;
|
||
}
|
||
};
|
||
|
||
|
||
class LaplacianInfo
|
||
{
|
||
public:
|
||
LaplacianInfo(const CoordType &_p, const int _n):sum(_p),cnt(_n) {}
|
||
LaplacianInfo() {}
|
||
CoordType sum;
|
||
ScalarType cnt;
|
||
};
|
||
|
||
// Classical Laplacian Smoothing. Each vertex can be moved onto the average of the adjacent vertices.
|
||
// Can smooth only the selected vertices and weight the smoothing according to the quality
|
||
// In the latter case 0 means that the vertex is not moved and 1 means that the vertex is moved onto the computed position.
|
||
//
|
||
// From the Taubin definition "A signal proc approach to fair surface design"
|
||
// We define the discrete Laplacian of a discrete surface signal by weighted averages over the neighborhoods
|
||
// \delta xi = \Sum wij (xj - xi) ;
|
||
// where xj are the adjacent vertices of xi and wij is usually 1/n_adj
|
||
//
|
||
// This function simply accumulate over a TempData all the positions of the ajacent vertices
|
||
//
|
||
static void AccumulateLaplacianInfo(MeshType &m, SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > &TD, bool cotangentFlag=false)
|
||
{
|
||
float weight =1.0f;
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
{
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j))
|
||
{
|
||
if(cotangentFlag) {
|
||
float angle = Angle(fi->P1(j)-fi->P2(j),fi->P0(j)-fi->P2(j));
|
||
weight = tan(M_PI_2 - angle);
|
||
}
|
||
|
||
TD[(*fi).V0(j)].sum+=(*fi).P1(j)*weight;
|
||
TD[(*fi).V1(j)].sum+=(*fi).P0(j)*weight;
|
||
TD[(*fi).V0(j)].cnt+=weight;
|
||
TD[(*fi).V1(j)].cnt+=weight;
|
||
}
|
||
}
|
||
// si azzaera i dati per i vertici di bordo
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
{
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V0(j)].sum=(*fi).P0(j);
|
||
TD[(*fi).V1(j)].sum=(*fi).P1(j);
|
||
TD[(*fi).V0(j)].cnt=1;
|
||
TD[(*fi).V1(j)].cnt=1;
|
||
}
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
{
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void VertexCoordLaplacian(MeshType &m, int step, bool SmoothSelected=false, bool cotangentWeight=false, vcg::CallBackPos * cb=0)
|
||
{
|
||
VertexIterator vi;
|
||
LaplacianInfo lpz(CoordType(0,0,0),0);
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert,lpz);
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
if(cb)cb(100*i/step, "Classic Laplacian Smoothing");
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m,TD,cotangentWeight);
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
{
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
(*vi).P() = ( (*vi).P() + TD[*vi].sum)/(TD[*vi].cnt+1);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Same of above but moves only the vertices that do not change FaceOrientation more that the given threshold
|
||
static void VertexCoordPlanarLaplacian(MeshType &m, int step, float AngleThrRad = math::ToRad(1.0), bool SmoothSelected=false, vcg::CallBackPos * cb=0)
|
||
{
|
||
VertexIterator vi;
|
||
FaceIterator fi;
|
||
LaplacianInfo lpz(CoordType(0,0,0),0);
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert,lpz);
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
if(cb)cb(100*i/step, "Planar Laplacian Smoothing");
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m,TD);
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
{
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
TD[*vi].sum = ( (*vi).P() + TD[*vi].sum)/(TD[*vi].cnt+1);
|
||
}
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi){
|
||
if(!(*fi).IsD()){
|
||
for (int j = 0; j < 3; ++j) {
|
||
if(Angle( NormalizedNormal(TD[(*fi).V0(j)].sum, (*fi).P1(j), (*fi).P2(j) ),
|
||
NormalizedNormal( (*fi).P0(j) , (*fi).P1(j), (*fi).P2(j) ) ) > AngleThrRad )
|
||
TD[(*fi).V0(j)].sum = (*fi).P0(j);
|
||
}
|
||
}
|
||
}
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi){
|
||
if(!(*fi).IsD()){
|
||
for (int j = 0; j < 3; ++j) {
|
||
if(Angle( NormalizedNormal(TD[(*fi).V0(j)].sum, TD[(*fi).V1(j)].sum, (*fi).P2(j) ),
|
||
NormalizedNormal( (*fi).P0(j) , (*fi).P1(j), (*fi).P2(j) ) ) > AngleThrRad )
|
||
{
|
||
TD[(*fi).V0(j)].sum = (*fi).P0(j);
|
||
TD[(*fi).V1(j)].sum = (*fi).P1(j);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
(*vi).P()= TD[*vi].sum;
|
||
|
||
|
||
|
||
}// end step
|
||
|
||
|
||
}
|
||
|
||
static void VertexCoordLaplacianBlend(MeshType &m, int step, float alpha, bool SmoothSelected=false)
|
||
{
|
||
VertexIterator vi;
|
||
LaplacianInfo lpz(CoordType(0,0,0),0);
|
||
assert (alpha<= 1.0);
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert);
|
||
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m,TD);
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
{
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
{
|
||
CoordType Delta = TD[*vi].sum/TD[*vi].cnt - (*vi).P();
|
||
(*vi).P() = (*vi).P() + Delta*alpha;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* a couple of notes about the lambda mu values
|
||
We assume that 0 < lambda , and mu is a negative scale factor such that mu < - lambda.
|
||
Holds mu+lambda < 0 (e.g in absolute value mu is greater)
|
||
|
||
let kpb be the pass-band frequency, taubin says that:
|
||
kpb = 1/lambda + 1/mu >0
|
||
|
||
Values of kpb from 0.01 to 0.1 produce good results according to the original paper.
|
||
|
||
kpb * mu - mu/lambda = 1
|
||
mu = 1/(kpb-1/lambda )
|
||
|
||
So if
|
||
* lambda == 0.5, kpb==0.1 -> mu = 1/(0.1 - 2) = -0.526
|
||
* lambda == 0.5, kpb==0.01 -> mu = 1/(0.01 - 2) = -0.502
|
||
*/
|
||
|
||
|
||
static void VertexCoordTaubin(MeshType &m, int step, float lambda, float mu, bool SmoothSelected=false, vcg::CallBackPos * cb=0)
|
||
{
|
||
LaplacianInfo lpz(CoordType(0,0,0),0);
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert,lpz);
|
||
VertexIterator vi;
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
if(cb) cb(100*i/step, "Taubin Smoothing");
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m,TD);
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
{
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
{
|
||
CoordType Delta = TD[*vi].sum/TD[*vi].cnt - (*vi).P();
|
||
(*vi).P() = (*vi).P() + Delta*lambda ;
|
||
}
|
||
}
|
||
TD.Init(lpz);
|
||
AccumulateLaplacianInfo(m,TD);
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
{
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
{
|
||
CoordType Delta = TD[*vi].sum/TD[*vi].cnt - (*vi).P();
|
||
(*vi).P() = (*vi).P() + Delta*mu ;
|
||
}
|
||
}
|
||
} // end for step
|
||
}
|
||
|
||
|
||
static void VertexCoordLaplacianQuality(MeshType &m, int step, bool SmoothSelected=false)
|
||
{
|
||
LaplacianInfo lpz;
|
||
lpz.sum=CoordType(0,0,0);
|
||
lpz.cnt=1;
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert,lpz);
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
{
|
||
float q=(*vi).Q();
|
||
(*vi).P()=(*vi).P()*q + (TD[*vi].sum/TD[*vi].cnt)*(1.0-q);
|
||
}
|
||
} // end for
|
||
};
|
||
|
||
/*
|
||
Improved Laplacian Smoothing of Noisy Surface Meshes
|
||
J. Vollmer, R. Mencl, and H. M<>ller
|
||
EUROGRAPHICS Volume 18 (1999), Number 3
|
||
*/
|
||
|
||
class HCSmoothInfo
|
||
{
|
||
public:
|
||
CoordType dif;
|
||
CoordType sum;
|
||
int cnt;
|
||
};
|
||
|
||
static void VertexCoordLaplacianHC(MeshType &m, int step, bool SmoothSelected=false )
|
||
{
|
||
ScalarType beta=0.5;
|
||
HCSmoothInfo lpz;
|
||
lpz.sum=CoordType(0,0,0);
|
||
lpz.dif=CoordType(0,0,0);
|
||
lpz.cnt=0;
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer,HCSmoothInfo > TD(m.vert,lpz);
|
||
// First Loop compute the laplacian
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
|
||
{
|
||
for(int j=0;j<3;++j)
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
// se l'edge j e' di bordo si deve sommare due volte
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
}
|
||
}
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
|
||
TD[*vi].sum/=(float)TD[*vi].cnt;
|
||
|
||
// Second Loop compute average difference
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
||
{
|
||
for(int j=0;j<3;++j)
|
||
{
|
||
TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P();
|
||
// se l'edge j e' di bordo si deve sommare due volte
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P();
|
||
TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P();
|
||
}
|
||
}
|
||
}
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
{
|
||
TD[*vi].dif/=(float)TD[*vi].cnt;
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
(*vi).P()= TD[*vi].sum - (TD[*vi].sum - (*vi).P())*beta + (TD[*vi].dif)*(1.f-beta);
|
||
}
|
||
} // end for step
|
||
};
|
||
|
||
// Laplacian smooth of the quality.
|
||
|
||
|
||
class ColorSmoothInfo
|
||
{
|
||
public:
|
||
unsigned int r;
|
||
unsigned int g;
|
||
unsigned int b;
|
||
unsigned int a;
|
||
int cnt;
|
||
};
|
||
|
||
static void VertexColorLaplacian(MeshType &m, int step, bool SmoothSelected=false, vcg::CallBackPos * cb=0)
|
||
{
|
||
ColorSmoothInfo csi;
|
||
csi.r=0; csi.g=0; csi.b=0; csi.cnt=0;
|
||
SimpleTempData<typename MeshType::VertContainer, ColorSmoothInfo> TD(m.vert,csi);
|
||
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
if(cb) cb(100*i/step, "Vertex Color Laplacian Smoothing");
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
TD[*vi]=csi;
|
||
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].r+=(*fi).V1(j)->C()[0];
|
||
TD[(*fi).V(j)].g+=(*fi).V1(j)->C()[1];
|
||
TD[(*fi).V(j)].b+=(*fi).V1(j)->C()[2];
|
||
TD[(*fi).V(j)].a+=(*fi).V1(j)->C()[3];
|
||
|
||
TD[(*fi).V1(j)].r+=(*fi).V(j)->C()[0];
|
||
TD[(*fi).V1(j)].g+=(*fi).V(j)->C()[1];
|
||
TD[(*fi).V1(j)].b+=(*fi).V(j)->C()[2];
|
||
TD[(*fi).V1(j)].a+=(*fi).V(j)->C()[3];
|
||
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)]=csi;
|
||
TD[(*fi).V1(j)]=csi;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].r+=(*fi).V1(j)->C()[0];
|
||
TD[(*fi).V(j)].g+=(*fi).V1(j)->C()[1];
|
||
TD[(*fi).V(j)].b+=(*fi).V1(j)->C()[2];
|
||
TD[(*fi).V(j)].a+=(*fi).V1(j)->C()[3];
|
||
|
||
TD[(*fi).V1(j)].r+=(*fi).V(j)->C()[0];
|
||
TD[(*fi).V1(j)].g+=(*fi).V(j)->C()[1];
|
||
TD[(*fi).V1(j)].b+=(*fi).V(j)->C()[2];
|
||
TD[(*fi).V1(j)].a+=(*fi).V(j)->C()[3];
|
||
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
{
|
||
(*vi).C()[0] = (unsigned int) ceil((double) (TD[*vi].r / TD[*vi].cnt));
|
||
(*vi).C()[1] = (unsigned int) ceil((double) (TD[*vi].g / TD[*vi].cnt));
|
||
(*vi).C()[2] = (unsigned int) ceil((double) (TD[*vi].b / TD[*vi].cnt));
|
||
(*vi).C()[3] = (unsigned int) ceil((double) (TD[*vi].a / TD[*vi].cnt));
|
||
}
|
||
} // end for step
|
||
};
|
||
|
||
static void FaceColorLaplacian(MeshType &m, int step, bool SmoothSelected=false, vcg::CallBackPos * cb=0)
|
||
{
|
||
ColorSmoothInfo csi;
|
||
csi.r=0; csi.g=0; csi.b=0; csi.cnt=0;
|
||
SimpleTempData<typename MeshType::FaceContainer, ColorSmoothInfo> TD(m.face,csi);
|
||
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
if(cb) cb(100*i/step, "Face Color Laplacian Smoothing");
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
TD[*fi]=csi;
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
{
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j))
|
||
{
|
||
TD[*fi].r+=(*fi).FFp(j)->C()[0];
|
||
TD[*fi].g+=(*fi).FFp(j)->C()[1];
|
||
TD[*fi].b+=(*fi).FFp(j)->C()[2];
|
||
TD[*fi].a+=(*fi).FFp(j)->C()[3];
|
||
++TD[*fi].cnt;
|
||
}
|
||
}
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD() && TD[*fi].cnt>0 )
|
||
if(!SmoothSelected || (*fi).IsS())
|
||
{
|
||
(*fi).C()[0] = (unsigned int) ceil((float) (TD[*fi].r / TD[*fi].cnt));
|
||
(*fi).C()[1] = (unsigned int) ceil((float) (TD[*fi].g / TD[*fi].cnt));
|
||
(*fi).C()[2] = (unsigned int) ceil((float) (TD[*fi].b / TD[*fi].cnt));
|
||
(*fi).C()[3] = (unsigned int) ceil((float) (TD[*fi].a / TD[*fi].cnt));
|
||
}
|
||
} // end for step
|
||
};
|
||
|
||
// Laplacian smooth of the quality.
|
||
|
||
class QualitySmoothInfo
|
||
{
|
||
public:
|
||
ScalarType sum;
|
||
int cnt;
|
||
};
|
||
|
||
|
||
static void VertexQualityLaplacian(MeshType &m, int step=1, bool SmoothSelected=false)
|
||
{
|
||
QualitySmoothInfo lpz;
|
||
lpz.sum=0;
|
||
lpz.cnt=0;
|
||
SimpleTempData<typename MeshType::VertContainer,QualitySmoothInfo> TD(m.vert,lpz);
|
||
//TD.Start(lpz);
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
TD[*vi]=lpz;
|
||
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)]=lpz;
|
||
TD[(*fi).V1(j)]=lpz;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
//VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
(*vi).Q()=TD[*vi].sum/TD[*vi].cnt;
|
||
}
|
||
|
||
//TD.Stop();
|
||
};
|
||
|
||
static void VertexNormalLaplacian(MeshType &m, int step,bool SmoothSelected=false)
|
||
{
|
||
LaplacianInfo lpz;
|
||
lpz.sum=CoordType(0,0,0);
|
||
lpz.cnt=0;
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert,lpz);
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
TD[*vi]=lpz;
|
||
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->N();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->N();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)]=lpz;
|
||
TD[(*fi).V1(j)]=lpz;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->N();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->N();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
//VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
if(!SmoothSelected || (*vi).IsS())
|
||
(*vi).N()=TD[*vi].sum/TD[*vi].cnt;
|
||
}
|
||
|
||
};
|
||
|
||
// Smooth solo lungo la direzione di vista
|
||
// alpha e' compreso fra 0(no smoot) e 1 (tutto smoot)
|
||
// Nota che se smootare il bordo puo far fare bandierine.
|
||
static void VertexCoordViewDepth(MeshType &m,
|
||
const CoordType & viewpoint,
|
||
const ScalarType alpha,
|
||
int step, bool SmoothBorder=false )
|
||
{
|
||
LaplacianInfo lpz;
|
||
lpz.sum=CoordType(0,0,0);
|
||
lpz.cnt=0;
|
||
SimpleTempData<typename MeshType::VertContainer,LaplacianInfo > TD(m.vert,lpz);
|
||
for(int i=0;i<step;++i)
|
||
{
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
TD[*vi]=lpz;
|
||
|
||
FaceIterator fi;
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if(!(*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->cP();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->cP();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
// si azzaera i dati per i vertici di bordo
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)]=lpz;
|
||
TD[(*fi).V1(j)]=lpz;
|
||
}
|
||
|
||
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
|
||
if(SmoothBorder)
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!(*fi).IsD())
|
||
for(int j=0;j<3;++j)
|
||
if((*fi).IsB(j))
|
||
{
|
||
TD[(*fi).V(j)].sum+=(*fi).V1(j)->cP();
|
||
TD[(*fi).V1(j)].sum+=(*fi).V(j)->cP();
|
||
++TD[(*fi).V(j)].cnt;
|
||
++TD[(*fi).V1(j)].cnt;
|
||
}
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if(!(*vi).IsD() && TD[*vi].cnt>0 )
|
||
{
|
||
CoordType np = TD[*vi].sum/TD[*vi].cnt;
|
||
CoordType d = (*vi).cP() - viewpoint; d.Normalize();
|
||
ScalarType s = d .dot ( np - (*vi).cP() );
|
||
(*vi).P() += d * (s*alpha);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/****************************************************************************************************************/
|
||
/****************************************************************************************************************/
|
||
// Paso Double Smoothing
|
||
// The proposed
|
||
// approach is a two step method where in the first step the face normals
|
||
// are adjusted and then, in a second phase, the vertex positions are updated.
|
||
// Ref:
|
||
// A. Belyaev and Y. Ohtake, A Comparison of Mesh Smoothing Methods, Proc. Israel-Korea Bi-Nat"l Conf. Geometric Modeling and Computer Graphics, pp. 83-87, 2003.
|
||
|
||
/****************************************************************************************************************/
|
||
/****************************************************************************************************************/
|
||
// Classi di info
|
||
|
||
class PDVertInfo
|
||
{
|
||
public:
|
||
CoordType np;
|
||
};
|
||
|
||
|
||
class PDFaceInfo
|
||
{
|
||
public:
|
||
CoordType m;
|
||
};
|
||
/***************************************************************************/
|
||
// Paso Doble Step 1 compute the smoothed normals
|
||
/***************************************************************************/
|
||
// Requirements:
|
||
// VF Topology
|
||
// Normalized Face Normals
|
||
//
|
||
// This is the Normal Smoothing approach of Shen and Berner
|
||
// Fuzzy Vector Median-Based Surface Smoothing TVCG 2004
|
||
|
||
|
||
void FaceNormalFuzzyVectorSB(MeshType &m,
|
||
SimpleTempData<typename MeshType::FaceContainer,PDFaceInfo > &TD,
|
||
ScalarType sigma)
|
||
{
|
||
int i;
|
||
|
||
FaceIterator fi;
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
{
|
||
CoordType bc=(*fi).Barycenter();
|
||
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
|
||
for(i=0;i<3;++i)
|
||
{
|
||
vcg::face::VFIterator<FaceType> ep(&*fi,i);
|
||
while (!ep.End())
|
||
{
|
||
ep.f->ClearV();
|
||
++ep;
|
||
}
|
||
}
|
||
|
||
// 1) Effectively average the normals weighting them with
|
||
(*fi).SetV();
|
||
CoordType mm=CoordType(0,0,0);
|
||
for(i=0;i<3;++i)
|
||
{
|
||
vcg::face::VFIterator<FaceType> ep(&*fi,i);
|
||
while (!ep.End())
|
||
{
|
||
if(! (*ep.f).IsV() )
|
||
{
|
||
if(sigma>0)
|
||
{
|
||
ScalarType dd=SquaredDistance(ep.f->Barycenter(),bc);
|
||
ScalarType ang=AngleN(ep.f->N(),(*fi).N());
|
||
mm+=ep.f->N()*exp((-sigma)*ang*ang/dd);
|
||
}
|
||
else mm+=ep.f->N();
|
||
(*ep.f).SetV();
|
||
}
|
||
++ep;
|
||
}
|
||
}
|
||
mm.Normalize();
|
||
TD[*fi].m=mm;
|
||
}
|
||
}
|
||
|
||
// Replace the normal of the face with the average of normals of the vertex adijacent faces.
|
||
// Normals are weighted with face area.
|
||
// It assumes that:
|
||
// Normals are normalized:
|
||
// VF adjacency is present.
|
||
|
||
static void FaceNormalLaplacianVF(MeshType &m)
|
||
{
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face);
|
||
|
||
PDFaceInfo lpzf;
|
||
lpzf.m=CoordType(0,0,0);
|
||
|
||
assert(tri::HasPerVertexVFAdjacency(m) && tri::HasPerFaceVFAdjacency(m) );
|
||
TDF.Start(lpzf);
|
||
int i;
|
||
|
||
FaceIterator fi;
|
||
|
||
tri::UpdateNormal<MeshType>::AreaNormalizeFace(m);
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
||
{
|
||
CoordType bc=Barycenter<FaceType>(*fi);
|
||
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
|
||
for(i=0;i<3;++i)
|
||
{
|
||
VFLocalIterator ep(&*fi,i);
|
||
for (;!ep.End();++ep)
|
||
ep.f->ClearV();
|
||
}
|
||
|
||
// 2) Effectively average the normals
|
||
CoordType normalSum=(*fi).N();
|
||
|
||
for(i=0;i<3;++i)
|
||
{
|
||
VFLocalIterator ep(&*fi,i);
|
||
for (;!ep.End();++ep)
|
||
{
|
||
if(! (*ep.f).IsV() )
|
||
{
|
||
normalSum += ep.f->N();
|
||
(*ep.f).SetV();
|
||
}
|
||
}
|
||
}
|
||
normalSum.Normalize();
|
||
TDF[*fi].m=normalSum;
|
||
}
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
(*fi).N()=TDF[*fi].m;
|
||
|
||
tri::UpdateNormal<MeshType>::NormalizePerFace(m);
|
||
|
||
TDF.Stop();
|
||
}
|
||
|
||
// Replace the normal of the face with the average of normals of the face adijacent faces.
|
||
// Normals are weighted with face area.
|
||
// It assumes that:
|
||
// Normals are normalized:
|
||
// FF adjacency is present.
|
||
|
||
|
||
static void FaceNormalLaplacianFF(MeshType &m, int step=1, bool SmoothSelected=false )
|
||
{
|
||
PDFaceInfo lpzf;
|
||
lpzf.m=CoordType(0,0,0);
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face,lpzf);
|
||
assert(tri::HasFFAdjacency(m));
|
||
|
||
FaceIterator fi;
|
||
tri::UpdateNormal<MeshType>::NormalizePerFaceByArea(m);
|
||
for(int iStep=0;iStep<step;++iStep)
|
||
{
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
||
{
|
||
CoordType normalSum=(*fi).N();
|
||
|
||
for(int i=0;i<3;++i)
|
||
normalSum+=(*fi).FFp(i)->N();
|
||
|
||
TDF[*fi].m=normalSum;
|
||
}
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
if(!SmoothSelected || (*fi).IsS())
|
||
(*fi).N()=TDF[*fi].m;
|
||
|
||
tri::UpdateNormal<MeshType>::NormalizePerFace(m);
|
||
}
|
||
}
|
||
|
||
|
||
/***************************************************************************/
|
||
// Paso Doble Step 1 compute the smoothed normals
|
||
/***************************************************************************/
|
||
// Requirements:
|
||
// VF Topology
|
||
// Normalized Face Normals
|
||
//
|
||
// This is the Normal Smoothing approach bsased on a angle thresholded weighting
|
||
// sigma is in the 0 .. 1 range, it represent the cosine of a threshold angle.
|
||
// sigma == 0 All the normals are averaged
|
||
// sigma == 1 Nothing is averaged.
|
||
// Only within the specified range are averaged toghether. The averagin is weighted with the
|
||
|
||
|
||
static void FaceNormalAngleThreshold(MeshType &m,
|
||
SimpleTempData<typename MeshType::FaceContainer,PDFaceInfo> &TD,
|
||
ScalarType sigma)
|
||
{
|
||
int i;
|
||
|
||
|
||
FaceIterator fi;
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
|
||
{
|
||
CoordType bc=Barycenter<FaceType>(*fi);
|
||
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
|
||
for(i=0;i<3;++i)
|
||
{
|
||
VFLocalIterator ep(&*fi,i);
|
||
for (;!ep.End();++ep)
|
||
ep.f->ClearV();
|
||
}
|
||
|
||
// 1) Effectively average the normals weighting them with the squared difference of the angle similarity
|
||
// sigma is the cosine of a threshold angle. sigma \in 0..1
|
||
// sigma == 0 All the normals are averaged
|
||
// sigma == 1 Nothing is averaged.
|
||
// The averaging is weighted with the difference between normals. more similar the normal more important they are.
|
||
|
||
CoordType normalSum=CoordType(0,0,0);
|
||
for(i=0;i<3;++i)
|
||
{
|
||
VFLocalIterator ep(&*fi,i);
|
||
for (;!ep.End();++ep)
|
||
{
|
||
if(! (*ep.f).IsV() )
|
||
{
|
||
ScalarType cosang=ep.f->N().dot((*fi).N());
|
||
// Note that if two faces form an angle larger than 90 deg, their contribution should be very very small.
|
||
// Without this clamping
|
||
cosang = math::Clamp(cosang,0.0001f,1.f);
|
||
if(cosang >= sigma)
|
||
{
|
||
ScalarType w = cosang-sigma;
|
||
normalSum += ep.f->N()*(w*w); // similar normals have a cosang very close to 1 so cosang - sigma is maximized
|
||
}
|
||
(*ep.f).SetV();
|
||
}
|
||
}
|
||
}
|
||
normalSum.Normalize();
|
||
TD[*fi].m=normalSum;
|
||
}
|
||
|
||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||
(*fi).N()=TD[*fi].m;
|
||
}
|
||
|
||
/****************************************************************************************************************/
|
||
// Restituisce il gradiente dell'area del triangolo nel punto p.
|
||
// Nota che dovrebbe essere sempre un vettore che giace nel piano del triangolo e perpendicolare al lato opposto al vertice p.
|
||
// Ottimizzato con Maple e poi pesantemente a mano.
|
||
|
||
static CoordType TriAreaGradient(CoordType &p,CoordType &p0,CoordType &p1)
|
||
{
|
||
CoordType dd = p1-p0;
|
||
CoordType d0 = p-p0;
|
||
CoordType d1 = p-p1;
|
||
CoordType grad;
|
||
|
||
ScalarType t16 = d0[1]* d1[2] - d0[2]* d1[1];
|
||
ScalarType t5 = -d0[2]* d1[0] + d0[0]* d1[2];
|
||
ScalarType t4 = -d0[0]* d1[1] + d0[1]* d1[0];
|
||
|
||
ScalarType delta= sqrtf(t4*t4 + t5*t5 +t16*t16);
|
||
|
||
grad[0]= (t5 * (-dd[2]) + t4 * ( dd[1]))/delta;
|
||
grad[1]= (t16 * (-dd[2]) + t4 * (-dd[0]))/delta;
|
||
grad[2]= (t16 * ( dd[1]) + t5 * ( dd[0]))/delta;
|
||
|
||
return grad;
|
||
}
|
||
|
||
template <class ScalarType>
|
||
static CoordType CrossProdGradient(CoordType &p, CoordType &p0, CoordType &p1, CoordType &m)
|
||
{
|
||
CoordType grad;
|
||
CoordType p00=p0-p;
|
||
CoordType p01=p1-p;
|
||
grad[0] = (-p00[2] + p01[2])*m[1] + (-p01[1] + p00[1])*m[2];
|
||
grad[1] = (-p01[2] + p00[2])*m[0] + (-p00[0] + p01[0])*m[2];
|
||
grad[2] = (-p00[1] + p01[1])*m[0] + (-p01[0] + p00[0])*m[1];
|
||
|
||
return grad;
|
||
}
|
||
|
||
/*
|
||
Deve Calcolare il gradiente di
|
||
E(p) = A(p,p0,p1) (n - m)^2 =
|
||
A(...) (2-2nm) =
|
||
(p0-p)^(p1-p)
|
||
2A - 2A * ------------- m =
|
||
2A
|
||
|
||
2A - 2 (p0-p)^(p1-p) * m
|
||
*/
|
||
|
||
static CoordType FaceErrorGrad(CoordType &p,CoordType &p0,CoordType &p1, CoordType &m)
|
||
{
|
||
return TriAreaGradient(p,p0,p1) *2.0f
|
||
- CrossProdGradient(p,p0,p1,m) *2.0f ;
|
||
}
|
||
/***************************************************************************/
|
||
// Paso Doble Step 2 Fitta la mesh a un dato insieme di normali
|
||
/***************************************************************************/
|
||
|
||
|
||
static void FitMesh(MeshType &m,
|
||
SimpleTempData<typename MeshType::VertContainer, PDVertInfo> &TDV,
|
||
SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> &TDF,
|
||
float lambda)
|
||
{
|
||
//vcg::face::Pos<FaceType> ep;
|
||
vcg::face::VFIterator<FaceType> ep;
|
||
VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
{
|
||
CoordType ErrGrad=CoordType(0,0,0);
|
||
|
||
ep.f=(*vi).VFp();
|
||
ep.z=(*vi).VFi();
|
||
while (!ep.End())
|
||
{
|
||
ErrGrad+=FaceErrorGrad(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P(),ep.f->V2(ep.z)->P(),TDF[ep.f].m);
|
||
++ep;
|
||
}
|
||
TDV[*vi].np=(*vi).P()-ErrGrad*(ScalarType)lambda;
|
||
}
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
(*vi).P()=TDV[*vi].np;
|
||
|
||
}
|
||
/****************************************************************************************************************/
|
||
|
||
|
||
|
||
static void FastFitMesh(MeshType &m,
|
||
SimpleTempData<typename MeshType::VertContainer, PDVertInfo> &TDV,
|
||
//SimpleTempData<typename MeshType::FaceContainer, PDFaceInfo> &TDF,
|
||
bool OnlySelected=false)
|
||
{
|
||
//vcg::face::Pos<FaceType> ep;
|
||
vcg::face::VFIterator<FaceType> ep;
|
||
VertexIterator vi;
|
||
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
{
|
||
CoordType Sum(0,0,0);
|
||
ScalarType cnt=0;
|
||
VFLocalIterator ep(&*vi);
|
||
for (;!ep.End();++ep)
|
||
{
|
||
CoordType bc=Barycenter<FaceType>(*ep.F());
|
||
Sum += ep.F()->N()*(ep.F()->N().dot(bc - (*vi).P()));
|
||
++cnt;
|
||
}
|
||
TDV[*vi].np=(*vi).P()+ Sum*(1.0/cnt);
|
||
}
|
||
|
||
if(OnlySelected)
|
||
{
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
if((*vi).IsS()) (*vi).P()=TDV[*vi].np;
|
||
}
|
||
else
|
||
{
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
(*vi).P()=TDV[*vi].np;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
static void VertexCoordPasoDoble(MeshType &m, int step, typename MeshType::ScalarType Sigma=0, int FitStep=10, typename MeshType::ScalarType FitLambda=0.05)
|
||
{
|
||
SimpleTempData< typename MeshType::VertContainer, PDVertInfo> TDV(m.vert);
|
||
SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face);
|
||
PDVertInfo lpzv;
|
||
lpzv.np=CoordType(0,0,0);
|
||
PDFaceInfo lpzf;
|
||
lpzf.m=CoordType(0,0,0);
|
||
|
||
assert(m.HasVFTopology());
|
||
m.HasVFTopology();
|
||
TDV.Start(lpzv);
|
||
TDF.Start(lpzf);
|
||
for(int j=0;j<step;++j)
|
||
{
|
||
|
||
vcg::tri::UpdateNormal<MeshType>::PerFace(m);
|
||
FaceNormalAngleThreshold(m,TDF,Sigma);
|
||
for(int k=0;k<FitStep;k++)
|
||
FitMesh(m,TDV,TDF,FitLambda);
|
||
}
|
||
|
||
TDF.Stop();
|
||
TDV.Stop();
|
||
|
||
}
|
||
|
||
// The sigma parameter affect the normal smoothing step
|
||
|
||
static void VertexCoordPasoDobleFast(MeshType &m, int NormalSmoothStep, typename MeshType::ScalarType Sigma=0, int FitStep=50, bool SmoothSelected =false)
|
||
{
|
||
PDVertInfo lpzv;
|
||
lpzv.np=CoordType(0,0,0);
|
||
PDFaceInfo lpzf;
|
||
lpzf.m=CoordType(0,0,0);
|
||
|
||
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
|
||
SimpleTempData< typename MeshType::VertContainer, PDVertInfo> TDV(m.vert,lpzv);
|
||
SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face,lpzf);
|
||
|
||
for(int j=0;j<NormalSmoothStep;++j)
|
||
FaceNormalAngleThreshold(m,TDF,Sigma);
|
||
|
||
for(int j=0;j<FitStep;++j)
|
||
FastFitMesh(m,TDV,SmoothSelected);
|
||
}
|
||
|
||
|
||
static void VertexNormalPointCloud(MeshType &m, int neighborNum, int iterNum, KdTree<float> *tp=0)
|
||
{
|
||
SimpleTempData<typename MeshType::VertContainer,Point3f > TD(m.vert,Point3f(0,0,0));
|
||
VertexConstDataWrapper<MeshType> ww(m);
|
||
KdTree<float> *tree=0;
|
||
if(tp==0) tree = new KdTree<float>(ww);
|
||
else tree=tp;
|
||
|
||
tree->setMaxNofNeighbors(neighborNum);
|
||
for(int ii=0;ii<iterNum;++ii)
|
||
{
|
||
for (VertexIterator vi = m.vert.begin();vi!=m.vert.end();++vi)
|
||
{
|
||
tree->doQueryK(vi->cP());
|
||
int neighbours = tree->getNofFoundNeighbors();
|
||
for (int i = 0; i < neighbours; i++)
|
||
{
|
||
int neightId = tree->getNeighborId(i);
|
||
if(m.vert[neightId].cN()*vi->cN()>0)
|
||
TD[vi]+= m.vert[neightId].cN();
|
||
else
|
||
TD[vi]-= m.vert[neightId].cN();
|
||
}
|
||
}
|
||
for (VertexIterator vi = m.vert.begin();vi!=m.vert.end();++vi)
|
||
{
|
||
vi->N()=TD[vi];
|
||
TD[vi]=Point3f(0,0,0);
|
||
}
|
||
tri::UpdateNormal<MeshType>::NormalizePerVertex(m);
|
||
}
|
||
|
||
if(tp==0) delete tree;
|
||
}
|
||
|
||
//! Laplacian smoothing with a reprojection on a target surface.
|
||
// grid must be a spatial index that contains all triangular faces of the target mesh gridmesh
|
||
template<class GRID, class MeshTypeTri>
|
||
static void VertexCoordLaplacianReproject(MeshType& m, GRID& grid, MeshTypeTri& gridmesh)
|
||
{
|
||
typename MeshType::VertexIterator vi;
|
||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||
{
|
||
if(! (*vi).IsD())
|
||
VertexCoordLaplacianReproject(m,grid,gridmesh,&*vi);
|
||
}
|
||
}
|
||
|
||
|
||
template<class GRID, class MeshTypeTri>
|
||
static void VertexCoordLaplacianReproject(MeshType& m, GRID& grid, MeshTypeTri& gridmesh, typename MeshType::VertexType* vp)
|
||
{
|
||
assert(MeshType::HEdgeType::HasHVAdjacency());
|
||
|
||
// compute barycenter
|
||
typedef std::vector<VertexPointer> VertexSet;
|
||
VertexSet verts;
|
||
verts = HalfEdgeTopology<MeshType>::getVertices(vp);
|
||
|
||
typename MeshType::CoordType ct(0,0,0);
|
||
for(typename VertexSet::iterator it = verts.begin(); it != verts.end(); ++it)
|
||
{
|
||
ct += (*it)->P();
|
||
}
|
||
ct /= verts.size();
|
||
|
||
// move vertex
|
||
vp->P() = ct;
|
||
|
||
|
||
vector<FacePointer> faces2 = HalfEdgeTopology<MeshType>::get_incident_faces(vp);
|
||
|
||
// estimate normal
|
||
typename MeshType::CoordType avgn(0,0,0);
|
||
|
||
for(unsigned int i = 0;i< faces2.size();i++)
|
||
if(faces2[i])
|
||
{
|
||
vector<VertexPointer> vertices = HalfEdgeTopology<MeshType>::getVertices(faces2[i]);
|
||
|
||
assert(vertices.size() == 4);
|
||
|
||
avgn += vcg::Normal<typename MeshType::CoordType>(vertices[0]->cP(), vertices[1]->cP(), vertices[2]->cP());
|
||
avgn += vcg::Normal<typename MeshType::CoordType>(vertices[2]->cP(), vertices[3]->cP(), vertices[0]->cP());
|
||
|
||
}
|
||
avgn.Normalize();
|
||
|
||
// reproject
|
||
ScalarType diag = m.bbox.Diag();
|
||
typename MeshType::CoordType raydir = avgn;
|
||
Ray3<typename MeshType::ScalarType> ray;
|
||
|
||
ray.SetOrigin(vp->P());
|
||
ScalarType t;
|
||
typename MeshTypeTri::FaceType* f = 0;
|
||
typename MeshTypeTri::FaceType* fr = 0;
|
||
|
||
vector<typename MeshTypeTri::CoordType> closests;
|
||
vector<typename MeshTypeTri::ScalarType> minDists;
|
||
vector<typename MeshTypeTri::FaceType*> faces;
|
||
ray.SetDirection(-raydir);
|
||
f = vcg::tri::DoRay<MeshTypeTri,GRID>(gridmesh, grid, ray, diag/4.0, t);
|
||
|
||
if (f)
|
||
{
|
||
closests.push_back(ray.Origin() + ray.Direction()*t);
|
||
minDists.push_back(fabs(t));
|
||
faces.push_back(f);
|
||
}
|
||
ray.SetDirection(raydir);
|
||
fr = vcg::tri::DoRay<MeshTypeTri,GRID>(gridmesh, grid, ray, diag/4.0, t);
|
||
if (fr)
|
||
{
|
||
closests.push_back(ray.Origin() + ray.Direction()*t);
|
||
minDists.push_back(fabs(t));
|
||
faces.push_back(fr);
|
||
}
|
||
|
||
if (fr) if (fr->N()*raydir<0) fr=0; // discard: inverse normal;
|
||
typename MeshType::CoordType newPos;
|
||
if (minDists.size() == 0)
|
||
{
|
||
newPos = vp->P();
|
||
f = 0;
|
||
}
|
||
else
|
||
{
|
||
int minI = std::min_element(minDists.begin(),minDists.end()) - minDists.begin();
|
||
newPos = closests[minI];
|
||
f = faces[minI];
|
||
}
|
||
|
||
if (f)
|
||
vp->P() = newPos;
|
||
}
|
||
|
||
}; //end Smooth class
|
||
|
||
} // End namespace tri
|
||
} // End namespace vcg
|
||
|
||
#endif // VCG_SMOOTH
|