270 lines
8.7 KiB
Plaintext
270 lines
8.7 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_MATRIX_FUNCTIONS
|
|
#define EIGEN_MATRIX_FUNCTIONS
|
|
|
|
#include <list>
|
|
#include <functional>
|
|
#include <iterator>
|
|
|
|
#include <Eigen/Core>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/Eigenvalues>
|
|
|
|
namespace Eigen {
|
|
|
|
/** \ingroup Unsupported_modules
|
|
* \defgroup MatrixFunctions_Module Matrix functions module
|
|
* \brief This module aims to provide various methods for the computation of
|
|
* matrix functions.
|
|
*
|
|
* To use this module, add
|
|
* \code
|
|
* #include <unsupported/Eigen/MatrixFunctions>
|
|
* \endcode
|
|
* at the start of your source file.
|
|
*
|
|
* This module defines the following MatrixBase methods.
|
|
* - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine
|
|
* - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine
|
|
* - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential
|
|
* - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix functions
|
|
* - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine
|
|
* - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine
|
|
*
|
|
* These methods are the main entry points to this module.
|
|
*
|
|
* %Matrix functions are defined as follows. Suppose that \f$ f \f$
|
|
* is an entire function (that is, a function on the complex plane
|
|
* that is everywhere complex differentiable). Then its Taylor
|
|
* series
|
|
* \f[ f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{3!} x^3 + \cdots \f]
|
|
* converges to \f$ f(x) \f$. In this case, we can define the matrix
|
|
* function by the same series:
|
|
* \f[ f(M) = f(0) + f'(0) M + \frac{f''(0)}{2} M^2 + \frac{f'''(0)}{3!} M^3 + \cdots \f]
|
|
*
|
|
*/
|
|
|
|
#include "src/MatrixFunctions/MatrixExponential.h"
|
|
#include "src/MatrixFunctions/MatrixFunction.h"
|
|
|
|
|
|
|
|
/**
|
|
\page matrixbaseextra MatrixBase methods defined in the MatrixFunctions module
|
|
\ingroup MatrixFunctions_Module
|
|
|
|
The remainder of the page documents the following MatrixBase methods
|
|
which are defined in the MatrixFunctions module.
|
|
|
|
|
|
|
|
\section matrixbase_cos MatrixBase::cos()
|
|
|
|
Compute the matrix cosine.
|
|
|
|
\code
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cos() const
|
|
\endcode
|
|
|
|
\param[in] M a square matrix.
|
|
\returns expression representing \f$ \cos(M) \f$.
|
|
|
|
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cos().
|
|
|
|
\sa \ref matrixbase_sin "sin()" for an example.
|
|
|
|
|
|
|
|
\section matrixbase_cosh MatrixBase::cosh()
|
|
|
|
Compute the matrix hyberbolic cosine.
|
|
|
|
\code
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const
|
|
\endcode
|
|
|
|
\param[in] M a square matrix.
|
|
\returns expression representing \f$ \cosh(M) \f$
|
|
|
|
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::cosh().
|
|
|
|
\sa \ref matrixbase_sinh "sinh()" for an example.
|
|
|
|
|
|
|
|
\section matrixbase_exp MatrixBase::exp()
|
|
|
|
Compute the matrix exponential.
|
|
|
|
\code
|
|
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
|
|
\endcode
|
|
|
|
\param[in] M matrix whose exponential is to be computed.
|
|
\returns expression representing the matrix exponential of \p M.
|
|
|
|
The matrix exponential of \f$ M \f$ is defined by
|
|
\f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
|
|
The matrix exponential can be used to solve linear ordinary
|
|
differential equations: the solution of \f$ y' = My \f$ with the
|
|
initial condition \f$ y(0) = y_0 \f$ is given by
|
|
\f$ y(t) = \exp(M) y_0 \f$.
|
|
|
|
The cost of the computation is approximately \f$ 20 n^3 \f$ for
|
|
matrices of size \f$ n \f$. The number 20 depends weakly on the
|
|
norm of the matrix.
|
|
|
|
The matrix exponential is computed using the scaling-and-squaring
|
|
method combined with Padé approximation. The matrix is first
|
|
rescaled, then the exponential of the reduced matrix is computed
|
|
approximant, and then the rescaling is undone by repeated
|
|
squaring. The degree of the Padé approximant is chosen such
|
|
that the approximation error is less than the round-off
|
|
error. However, errors may accumulate during the squaring phase.
|
|
|
|
Details of the algorithm can be found in: Nicholas J. Higham, "The
|
|
scaling and squaring method for the matrix exponential revisited,"
|
|
<em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179–1193,
|
|
2005.
|
|
|
|
Example: The following program checks that
|
|
\f[ \exp \left[ \begin{array}{ccc}
|
|
0 & \frac14\pi & 0 \\
|
|
-\frac14\pi & 0 & 0 \\
|
|
0 & 0 & 0
|
|
\end{array} \right] = \left[ \begin{array}{ccc}
|
|
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
|
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
|
0 & 0 & 1
|
|
\end{array} \right]. \f]
|
|
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
|
the z-axis.
|
|
|
|
\include MatrixExponential.cpp
|
|
Output: \verbinclude MatrixExponential.out
|
|
|
|
\note \p M has to be a matrix of \c float, \c double,
|
|
\c complex<float> or \c complex<double> .
|
|
|
|
|
|
|
|
\section matrixbase_matrixfunction MatrixBase::matrixFunction()
|
|
|
|
Compute a matrix function.
|
|
|
|
\code
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::matrixFunction(typename internal::stem_function<typename internal::traits<Derived>::Scalar>::type f) const
|
|
\endcode
|
|
|
|
\param[in] M argument of matrix function, should be a square matrix.
|
|
\param[in] f an entire function; \c f(x,n) should compute the n-th
|
|
derivative of f at x.
|
|
\returns expression representing \p f applied to \p M.
|
|
|
|
Suppose that \p M is a matrix whose entries have type \c Scalar.
|
|
Then, the second argument, \p f, should be a function with prototype
|
|
\code
|
|
ComplexScalar f(ComplexScalar, int)
|
|
\endcode
|
|
where \c ComplexScalar = \c std::complex<Scalar> if \c Scalar is
|
|
real (e.g., \c float or \c double) and \c ComplexScalar =
|
|
\c Scalar if \c Scalar is complex. The return value of \c f(x,n)
|
|
should be \f$ f^{(n)}(x) \f$, the n-th derivative of f at x.
|
|
|
|
This routine uses the algorithm described in:
|
|
Philip Davies and Nicholas J. Higham,
|
|
"A Schur-Parlett algorithm for computing matrix functions",
|
|
<em>SIAM J. %Matrix Anal. Applic.</em>, <b>25</b>:464–485, 2003.
|
|
|
|
The actual work is done by the MatrixFunction class.
|
|
|
|
Example: The following program checks that
|
|
\f[ \exp \left[ \begin{array}{ccc}
|
|
0 & \frac14\pi & 0 \\
|
|
-\frac14\pi & 0 & 0 \\
|
|
0 & 0 & 0
|
|
\end{array} \right] = \left[ \begin{array}{ccc}
|
|
\frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
|
|
\frac12\sqrt2 & \frac12\sqrt2 & 0 \\
|
|
0 & 0 & 1
|
|
\end{array} \right]. \f]
|
|
This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
|
|
the z-axis. This is the same example as used in the documentation
|
|
of \ref matrixbase_exp "exp()".
|
|
|
|
\include MatrixFunction.cpp
|
|
Output: \verbinclude MatrixFunction.out
|
|
|
|
Note that the function \c expfn is defined for complex numbers
|
|
\c x, even though the matrix \c A is over the reals. Instead of
|
|
\c expfn, we could also have used StdStemFunctions::exp:
|
|
\code
|
|
A.matrixFunction(StdStemFunctions<std::complex<double> >::exp, &B);
|
|
\endcode
|
|
|
|
|
|
|
|
\section matrixbase_sin MatrixBase::sin()
|
|
|
|
Compute the matrix sine.
|
|
|
|
\code
|
|
const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sin() const
|
|
\endcode
|
|
|
|
\param[in] M a square matrix.
|
|
\returns expression representing \f$ \sin(M) \f$.
|
|
|
|
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sin().
|
|
|
|
Example: \include MatrixSine.cpp
|
|
Output: \verbinclude MatrixSine.out
|
|
|
|
|
|
|
|
\section matrixbase_sinh const MatrixBase::sinh()
|
|
|
|
Compute the matrix hyperbolic sine.
|
|
|
|
\code
|
|
MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::sinh() const
|
|
\endcode
|
|
|
|
\param[in] M a square matrix.
|
|
\returns expression representing \f$ \sinh(M) \f$
|
|
|
|
This function calls \ref matrixbase_matrixfunction "matrixFunction()" with StdStemFunctions::sinh().
|
|
|
|
Example: \include MatrixSinh.cpp
|
|
Output: \verbinclude MatrixSinh.out
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
#endif // EIGEN_MATRIX_FUNCTIONS
|
|
|