vcglib/vcg/space/rasterized_outline2_packer.h

707 lines
31 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2013 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __RASTERIZED_OUTLINE2_PACKER_H__
#define __RASTERIZED_OUTLINE2_PACKER_H__
#include <vcg/space/rect_packer.h>
#include <vcg/complex/algorithms/outline_support.h>
namespace vcg
{
class RasterizedOutline2
{
private:
//the grid is the "bounding grid" of the polygon, which is returned by the rasterization process
//this is a vector of "bounding grids", there is one for each rasterization (different rotation or whatever)
std::vector < std::vector< std::vector<int> > > grids;
//points: the points which make the polygon
std::vector<Point2f> points;
//top: a vector containing the number of cells (for the i-th column starting from left) from the
//FIRST NON-EMTPY cell at the bottom to the LAST NON-EMPTY CELL at the top (there is one top vector for each rasterization)
std::vector< std::vector<int> > deltaY;
//bottom: a vector containing the number of EMPTY cells found starting from the bottom
//until the first NON-EMPTY cell is found (there is one bottom vector for each rasterization)
std::vector< std::vector<int> > bottom;
//right: a vector containing the number of cells (for the i-th row starting from bottom) from the
//FIRST NON-EMTPY cell at the left to the LAST NON-EMPTY CELL at the right (there is one right vector for each rasterization)
std::vector< std::vector<int> > deltaX;
//left: a vector containing the number of EMPTY cells found starting from the left (at the i-th row starting from the bottom)
//until the first NON-EMPTY cell is found (there is one left vector for each rasterization)
std::vector< std::vector<int> > left;
//the area, measured in cells, of the discrete representations of the polygons
std::vector<int> discreteAreas;
public:
RasterizedOutline2() { }
int gridHeight(int i) { return grids.at(i).size(); }
int gridWidth( int i) { return grids.at(i).at(0).size(); }
std::vector<Point2f>& getPoints() { return points; }
const std::vector<Point2f>& getPointsConst() const{ return points; }
std::vector< std::vector<int> >& getGrids(int rast_i) { return grids[rast_i]; }
//get top/bottom/left/right vectors of the i-th rasterization
std::vector<int>& getDeltaY(int i) { return deltaY[i]; }
std::vector<int>& getBottom(int i) { return bottom[i]; }
std::vector<int>& getDeltaX(int i) { return deltaX[i]; }
std::vector<int>& getLeft(int i) { return left[i]; }
int& getDiscreteArea(int i) { return discreteAreas[i]; }
void addPoint(Point2f& newpoint) { points.push_back(newpoint); }
void setPoints(std::vector<Point2f>& newpoints) { points = newpoints; }
//resets the state of the poly and resizes all the states vectors
void resetState(int totalRasterizationsNum) {
discreteAreas.clear();
deltaY.clear();
bottom.clear();
deltaX.clear();
left.clear();
grids.clear();
discreteAreas.resize(totalRasterizationsNum);
deltaY.resize(totalRasterizationsNum);
bottom.resize(totalRasterizationsNum);
deltaX.resize(totalRasterizationsNum);
left.resize(totalRasterizationsNum);
grids.resize(totalRasterizationsNum);
}
void initFromGrid(int rast_i) {
std::vector< std::vector<int> >& tetrisGrid = grids[rast_i];
int gridWidth = tetrisGrid[0].size();
int gridHeight = tetrisGrid.size();
//compute bottom,
//where bottom[i] = empty cells from the bottom in the column i
for (int col = 0; col < gridWidth; col++) {
int bottom_i = 0;
for (int row = gridHeight - 1; row >= 0; row--) {
if (tetrisGrid[row][col] == 0) {
bottom_i++;
}
else {
bottom[rast_i].push_back(bottom_i);
break;
}
}
}
if (bottom[rast_i].size() == 0) assert("ERROR: EMPTY BOTTOM VECTOR"==0);
//compute top
//IT ASSUMES THAT THERE IS AT LEAST ONE NON-0 ELEMENT (which should always be the case, even if the poly is just a point)
//deltaY[i] = for the column i, it stores the number of cells which are between the bottom and the top side of the poly
for (int col = 0; col < gridWidth; col++) {
int deltay_i = gridHeight - bottom[rast_i][col];
for (int row = 0; row < gridHeight; row++) {
if (tetrisGrid[row][col] == 0) {
deltay_i--;
}
else {
break;
}
}
deltaY[rast_i].push_back(deltay_i);
}
if (deltaY[rast_i].size() == 0) assert("ERROR: EMPTY deltaY VECTOR"==0);
//same meaning as bottom, but for the left side
//we want left/right sides vector to be ordered so that index 0 is at poly's bottom
int left_i;
for (int row = gridHeight-1; row >= 0; --row) {
//for (int row = 0; row < gridHeight; ++row) {
left_i = 0;
for (int col = 0; col < gridWidth; col++) {
if (tetrisGrid[row][col] == 0) ++left_i;
else {
left[rast_i].push_back(left_i);
break;
}
}
}
if (left[rast_i].size() == 0) assert("ERROR: EMPTY leftSide VECTOR"==0);
//we want left/right sides vector to be ordered so that index 0 is at poly's bottom
int deltax_i;
for (int row = gridHeight-1; row >= 0; --row) {
//for (int row = 0; row < gridHeight; ++row) {
deltax_i = gridWidth - left[rast_i][gridHeight - 1 - row];
for (int col = gridWidth - 1; col >= 0; --col) {
if (tetrisGrid[row][col] == 0) --deltax_i;
else {
break;
}
}
deltaX[rast_i].push_back(deltax_i);
}
if (deltaX[rast_i].size() == 0) assert("ERROR: EMPTY rightSide VECTOR"==0);
//compute the discreteArea: IT IS THE AREA (measured in grid cells) BETWEEN THE TOP AND BOTTOM SIDES...
int discreteArea = 0;
for (size_t i = 0; i < deltaY[rast_i].size(); i++) {
discreteArea += deltaY[rast_i][i];
}
discreteAreas[rast_i] = discreteArea;
}
};
template <class ScalarType>
class ComparisonFunctor
{
public:
std::vector<RasterizedOutline2> & v;
inline ComparisonFunctor( std::vector<RasterizedOutline2> & nv ) : v(nv) { }
inline bool operator() ( int a, int b )
{
float area1 = tri::OutlineUtil<ScalarType>::Outline2Area(v[a].getPoints());
float area2 = tri::OutlineUtil<ScalarType>::Outline2Area(v[b].getPoints());
return area1 > area2;
}
};
template <class SCALAR_TYPE, class RASTERIZER_TYPE>
class RasterizedOutline2Packer
{
typedef typename vcg::Box2<SCALAR_TYPE> Box2x;
typedef typename vcg::Point2<SCALAR_TYPE> Point2x;
typedef typename vcg::Similarity2<SCALAR_TYPE> Similarity2x;
public:
class Parameters
{
public:
//size of one cell of the grid (square cells at the moment)
int cellSize;
//the number of rasterizations to create for each polygon; It must be a multiple of 4.
int rotationNum;
//THE PACKING ALGO TO USE:
//0 - BOTTOM PACKING: it just uses bottom horizon and computes cost using the num of empty cells between the bottom side of the poly and the bottom horizon
//1 - BOTTOM PACKING WITH PENALTY: it uses both bottom and left horizons, and it makes so that polys are placed the closest possible to the left horizon
//2 - CORNER PACKING: 1) tries to drop poly from right to left and computes cost relative to the left horizon
// 2) tries to drop poly from top to bottom and computes cost relative to the bottom horizon
// 3) chooses the X,Y which minimize the cost
// NOTE: IN THIS ALGO THE COST HAVE TO INCLUDE THE PENALTY, OTHERWISE THE TWO STRATEGIES (dropping from right and from top)
// WILL COMPETE CAUSING A LOW PACKING EFFICIENCY
enum costFuncEnum {
MinWastedSpace,
LowestHorizon,
MixedCost
};
costFuncEnum costFunction;
bool doubleHorizon;
///default constructor
Parameters()
{
costFunction = LowestHorizon;
doubleHorizon=true;
rotationNum = 16;
cellSize = 8;
}
};
//THE CLASS WHICH HANDLES THE PACKING AND THE UPDATED STATE OF THE PACKING ALGORITHMS
class packingfield
{
private:
//the bottomHorizon stores the length of the i-th row in the current solution
std::vector<int> mLeftHorizon;
//the bottomHorizon stores the height of the i-th column in the current solution
std::vector<int> mBottomHorizon;
//the size of the packing grid
vcg::Point2i mSize;
//packing parameters
Parameters params;
public:
packingfield(vcg::Point2i size, const Parameters& par)
{
mBottomHorizon.resize(size.X(), 0);
mLeftHorizon.resize(size.Y(), 0);
params = par;
mSize = Point2i(size.X(), size.Y());
}
std::vector<int>& bottomHorizon() { return mBottomHorizon; }
std::vector<int>& leftHorizon() { return mLeftHorizon; }
vcg::Point2i& size() { return mSize; }
//returns the score relative to the left horizon of that poly in that particular position, taking into account the choosen algo
int getCostX(RasterizedOutline2& poly, Point2i pos, int rast_i) {
switch (params.costFunction) {
case 0: return emptyCellBetweenPolyAndLeftHorizon(poly, pos, rast_i);
case 1: return maxXofPoly(poly, pos, rast_i);
case 2: return costXWithPenaltyOnY(poly, pos, rast_i);
}
return 0;
}
//returns the score relative to the bottom horizon of that poly in that particular position, taking into account the choosen algo
int getCostY(RasterizedOutline2& poly, Point2i pos, int rast_i) {
switch (params.costFunction) {
case 0: return emptyCellBetweenPolyAndBottomHorizon(poly, pos, rast_i);
case 1: return maxYofPoly(poly, pos, rast_i);
case 2: return costYWithPenaltyOnX(poly, pos, rast_i);
}
return 0;
}
//given a poly and the column at which it is placed,
//this returns the Y at which the wasted space is minimum
//i.e. the Y at which the polygon touches the horizon
int dropY(RasterizedOutline2& poly, int col, int rast_i) {
int tmp = INT_MAX;
int adjacentIndex = 0;
std::vector<int>& bottom = poly.getBottom(rast_i);
//look for for index of the column at which the poly touches the bottom horizon first
for (size_t i = 0; i < bottom.size(); ++i) {
int diff = bottom[i] - mBottomHorizon[col + i];
if (diff < tmp) {
adjacentIndex = i;
tmp = diff;
}
}
//return the lowest Y of the dropped poly
return mBottomHorizon[col + adjacentIndex] - bottom[adjacentIndex];
}
//given a poly and the row at which it is placed,
//this returns the X at which the wasted space is minimum
//i.e. the X at which the polygon touches the left horizon
int dropX(RasterizedOutline2& poly, int row, int rast_i) {
int tmp = INT_MAX;
int adjacentIndex = 0;
std::vector<int>& left = poly.getLeft(rast_i);
//look for for index of the column at which the poly touches the left horizon first
for (size_t i = 0; i < left.size(); ++i) {
int diff = left[i] - mLeftHorizon[row + i];
if (diff < tmp) {
adjacentIndex = i;
tmp = diff;
}
}
//and return the lowest X of the dropped poly
return mLeftHorizon[row + adjacentIndex] - left[adjacentIndex];
}
int costYWithPenaltyOnX(RasterizedOutline2& poly, Point2i pos, int rast_i) {
std::vector<int>& left = poly.getLeft(rast_i);
//get the standard cost on X axis
int score = emptyCellBetweenPolyAndBottomHorizon(poly, pos, rast_i);
//apply a penalty if the poly is the poly is far from the left horizon
//thus preferring poly which are closer to the left horizon
for (size_t i = 0; i < left.size(); ++i) {
//ASSUMPTION: if the poly is (partially/fully) under the left horizon,
//then we will count this as a good thing (subtracting a quantity from the cost) but since we don't have
//a grid holding the current state of the packing field, we don't know the position of the polygons at our left side,
//so we ASSUME that there isn't any polygon between the poly we're considering and the Y axis of the packing field,
//and count the number of cells between us and the RIGHT end the packing field
//(NOTE: ^^^^^^^ this implies that the closer we are to the left horizon, the lower the cost will get)
if (pos.X() + left[i] < mLeftHorizon[pos.Y() + i])
//number of cells between us and the RIGHT end the packing field
score -= mSize.X() - pos.X() - left[i];
else //the number of cells between the bottom side of the poly at the (posY+i)-th row and the value of the horizon in that row
score += pos.X() + left[i] - mLeftHorizon[pos.Y() + i];
}
return score;
}
//returns the number of empty cells between poly's bottom side and the bottom horizon
int emptyCellBetweenPolyAndBottomHorizon(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
std::vector<int>& bottom = poly.getBottom(rast_i);
int score = 0;
int min = INT_MAX;
//count the number of empty cells between poly's bottom side and the bottom horizon
for (size_t i = 0; i < bottom.size(); ++i) {
int diff = bottom[i] - mBottomHorizon[pos.X() + i];
score += diff;
if (diff < min) min = diff;
}
score += (-min*bottom.size());
return score;
}
int costXWithPenaltyOnY(RasterizedOutline2& poly, Point2i pos, int rast_i) {
std::vector<int>& bottom = poly.getBottom(rast_i);
//get the standard cost on X axis
int score = emptyCellBetweenPolyAndLeftHorizon(poly, pos, rast_i);
//apply a penalty if the poly is the poly is far from the bottom horizon
//thus preferring poly which are closer to the bottom horizon
for (size_t i = 0; i < bottom.size(); ++i) {
//ASSUMPTION: if the poly is (partially/fully) under the bottom horizon,
//then we will count this as a good thing (subtracting a quantity from the cost) but since we don't have
//a grid holding the current state of the packing field, we don't know the position of the polygons beneath us,
//so we ASSUME that there isn't any polygon between the poly we're considering and the X axis of the packing field,
//and count the number of cells between us and the TOP end the packing field
//(NOTE: ^^^^^^^ this implies that the closer we are to the bottom horizon, the lower the cost will get)
if (pos.Y() + bottom[i] < mBottomHorizon[pos.X() + i])
//number of cells between us and the TOP side the packing field
score -= (mSize.Y() - pos.Y() - bottom[i]);
else //the number of cells between the left side of the poly at the (posX+i)-th column and the value of the horizon in that column
score += pos.X() + bottom[i] - mBottomHorizon[pos.X() + i];
}
return score;
}
int maxYofPoly(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
return pos.Y() + poly.gridHeight(rast_i);
}
int maxXofPoly(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
return pos.X() + poly.gridWidth(rast_i);
}
//returns the number of empty cells between poly's left side and the left horizon
int emptyCellBetweenPolyAndLeftHorizon(RasterizedOutline2& poly, Point2i pos, int rast_i)
{
std::vector<int>& left = poly.getLeft(rast_i);
int score = 0;
int min = INT_MAX;
//count the number of empty cells between poly's left side and the left horizon
for (size_t i = 0; i < left.size(); ++i) {
int diff = left[i] - mLeftHorizon[pos.Y() + i];
score += diff;
if (diff < min) min = diff;
}
score += (-min*left.size());
return score;
}
//updates the horizons according to the chosen position
void placePoly(RasterizedOutline2& poly, Point2i pos, int rast_i) {
std::vector<int>& bottom = poly.getBottom(rast_i);
std::vector<int>& deltaY = poly.getDeltaY(rast_i);
std::vector<int>& left = poly.getLeft(rast_i);
std::vector<int>& deltaX = poly.getDeltaX(rast_i);
//update bottom horizon
for (int i = 0; i < poly.gridWidth(rast_i); i++) {
//tmpHor = the highest Y reached by the poly, RELATIVE TO the packing field coords system
int tmpHor = pos.Y() + bottom[i] + deltaY[i];
//only update the horizon if it's higher than this value
if (tmpHor > mBottomHorizon[pos.X() + i]) mBottomHorizon[pos.X() + i] = tmpHor;
}
if (params.costFunction != Parameters::MixedCost
&& !params.doubleHorizon) return;
//update leftHorizon
for (int i = 0; i < poly.gridHeight(rast_i); i++) {
//tmpHor = the highest X reached by the poly, RELATIVE TO the packing field coords system
int tmpHor = pos.X() + left[i] + deltaX[i];
//only update the horizon if it's higher than this value
if (tmpHor > mLeftHorizon[pos.Y() + i]) mLeftHorizon[pos.Y() + i] = tmpHor;
}
}
};
static bool Pack(std::vector< std::vector< Point2x> > &polyPointsVec,
Point2i containerSize,
std::vector<Similarity2x> &trVec,
const Parameters &packingPar)
{
std::vector<Point2i> containerSizes(1,containerSize);
std::vector<int> polyToContainer;
return Pack(polyPointsVec,containerSizes,trVec,polyToContainer,packingPar);
}
static bool Pack(std::vector< std::vector< Point2x> > &polyPointsVec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar)
{
int containerNum=containerSizes.size();
float gridArea = 0;
//if containerSize isn't multiple of cell size, crop the grid (leaving containerSize as it is)
for (int i = 0; i < containerNum; i++) {
Point2i gridSize(containerSizes[i].X() / packingPar.cellSize,
containerSizes[i].Y() / packingPar.cellSize);
gridArea += (gridSize.X()*packingPar.cellSize * gridSize.Y()*packingPar.cellSize);
}
float totalArea = 0;
for (size_t j = 0; j < polyPointsVec.size(); j++) {
float curArea = tri::OutlineUtil<SCALAR_TYPE>::Outline2Area(polyPointsVec[j]);
if(curArea<0) tri::OutlineUtil<SCALAR_TYPE>::ReverseOutline2(polyPointsVec[j]);
totalArea += fabs(curArea);
}
//we first set it to the "optimal" scale
float optimalScale = sqrt(gridArea/ totalArea);
float currScale = optimalScale;
float latestFailScale = 0;
bool ret = false;
//we look for the first scale factor which makes the packing algo succeed
//we will use this value in the bisection method afterwards
ret = PolyPacking(polyPointsVec, containerSizes, trVec, polyToContainer, packingPar, currScale);
while (!ret) {
latestFailScale = currScale;
currScale *= 0.60;
ret = PolyPacking(polyPointsVec, containerSizes, trVec, polyToContainer, packingPar, currScale);
}
//if it managed to pack with the optimal scale (VERY unlikely), just leave
if (currScale == optimalScale) return true;
//BISECTION METHOD
float latestSuccessScale = currScale;
float tmpScale = (latestSuccessScale + latestFailScale) / 2;
while ( (latestFailScale / latestSuccessScale) - 1 > 0.001
|| ((latestFailScale / latestSuccessScale) - 1 < 0.001 && !ret) ) {
tmpScale = (latestSuccessScale + latestFailScale) / 2;
ret = PolyPacking(polyPointsVec, containerSizes, trVec, polyToContainer, packingPar, tmpScale);
if (ret) latestSuccessScale = tmpScale;
else latestFailScale = tmpScale;
}
float finalArea = 0;
//compute occupied area
for (size_t j = 0; j < polyPointsVec.size(); j++) {
std::vector<Point2f> oldPoints = polyPointsVec[j];
for (size_t k = 0; k < oldPoints.size(); k++) {
oldPoints[k].Scale(latestSuccessScale, latestSuccessScale);
}
finalArea += tri::OutlineUtil<SCALAR_TYPE>::Outline2Area(oldPoints);
}
// printf("PACKING EFFICIENCY: %f with scale %f\n", finalArea/gridArea, latestSuccessScale);
}
//tries to pack polygons using the given gridSize and scaleFactor
//stores the result, i.e. the vector of similarities, in trVec
static bool PolyPacking(std::vector< std::vector< Point2x> > &outline2Vec,
const std::vector<Point2i> &containerSizes,
std::vector<Similarity2x> &trVec,
std::vector<int> &polyToContainer,
const Parameters &packingPar,
float scaleFactor)
{
int containerNum = containerSizes.size();
polyToContainer.clear();
polyToContainer.resize(outline2Vec.size());
trVec.resize(outline2Vec.size());
//create packing fields, one for each container
std::vector<Point2i> gridSizes;
std::vector<packingfield> packingFields;
for (int i=0; i < containerNum; i++) {
//if containerSize isn't multiple of cell size, crop the grid (leaving containerSize as it is)
gridSizes.push_back(Point2i(containerSizes[i].X() / packingPar.cellSize,
containerSizes[i].Y() / packingPar.cellSize));
packingfield one(gridSizes[i], packingPar);
packingFields.push_back(one);
}
//create the vector of polys, starting for the poly points we received as parameter
std::vector<RasterizedOutline2> polyVec(outline2Vec.size());
for(size_t i=0;i<polyVec.size();i++) {
polyVec[i].setPoints(outline2Vec[i]);
}
// Build a permutation that holds the indexes of the polys ordered by their area
std::vector<int> perm(polyVec.size());
for(size_t i=0;i<polyVec.size();i++) perm[i] = i;
sort(perm.begin(),perm.end(),ComparisonFunctor<float>(polyVec));
// printf("BEGIN OF PACKING\n");
// **** First Step: Rasterize all the polygons ****
for (size_t i = 0; i < polyVec.size(); i++) {
polyVec[i].resetState(packingPar.rotationNum);
for (int rast_i = 0; rast_i < packingPar.rotationNum/4; rast_i++) {
//create the rasterization (i.e. fills bottom/top/grids/internalWastedCells arrays)
RASTERIZER_TYPE::rasterize(polyVec[i],scaleFactor, rast_i,packingPar.rotationNum,packingPar.cellSize);
}
}
// **** Second Step: iterate on the polys, and try to find the best position ****
for (size_t currPoly = 0; currPoly < polyVec.size(); currPoly++) {
int i = perm[currPoly];
int bestRastIndex = -1;
int bestCost = INT_MAX;
int bestPolyX = -1;
int bestPolyY = -1;
int bestContainer = -1; //the container where the poly fits best
//try all the rasterizations and choose the best fitting one
for (int rast_i = 0; rast_i < packingPar.rotationNum; rast_i++) {
//try to fit the poly in all containers, in all valid positions
for (int grid_i = 0; grid_i < containerNum; grid_i++) {
int maxCol = gridSizes[grid_i].X() - polyVec[i].gridWidth(rast_i);
int maxRow = gridSizes[grid_i].Y() - polyVec[i].gridHeight(rast_i);
//look for the best position, dropping from top
for (int col = 0; col < maxCol; col++) {
//get the Y at which the poly touches the horizontal horizon
int currPolyY = packingFields[grid_i].dropY(polyVec[i],col, rast_i);
if (currPolyY + polyVec[i].gridHeight(rast_i) > gridSizes[grid_i].Y()) {
//skip this column, as the poly would go outside the grid if placed here
continue;
}
int currCost = packingFields[grid_i].getCostX(polyVec[i], Point2i(col, currPolyY), rast_i) +
packingFields[grid_i].getCostY(polyVec[i], Point2i(col, currPolyY), rast_i);
//if this rasterization is better than what we found so far
if (currCost < bestCost) {
bestContainer = grid_i;
bestCost = currCost;
bestRastIndex = rast_i;
bestPolyX = col;
bestPolyY = currPolyY;
}
}
if (!packingPar.doubleHorizon) continue;
for (int row = 0; row < maxRow; row++) {
//get the Y at which the poly touches the horizontal horizon
int currPolyX = packingFields[grid_i].dropX(polyVec[i],row, rast_i);
if (currPolyX + polyVec[i].gridWidth(rast_i) > gridSizes[grid_i].X()) {
//skip this column, as the poly would go outside the grid if placed here
continue;
}
int currCost = packingFields[grid_i].getCostY(polyVec[i], Point2i(currPolyX, row), rast_i) +
packingFields[grid_i].getCostX(polyVec[i], Point2i(currPolyX, row), rast_i);
//if this rasterization fits better than those we tried so far
if (currCost < bestCost) {
bestContainer = grid_i;
bestCost = currCost;
bestRastIndex = rast_i;
bestPolyX = currPolyX;
bestPolyY = row;
}
}
}
}
//if we couldn't find a valid position for the poly return false, as we couldn't pack with the current scaleFactor
if (bestRastIndex == -1) {
// printf("Items didn't fit using %f as scaleFactor\n", scaleFactor);
return false;
}
//we found the best position for a given poly,
//let's place it, so that the horizons are updated accordingly
packingFields[bestContainer].placePoly(polyVec[i], Point2i(bestPolyX, bestPolyY), bestRastIndex);
//create the rotated bb which we will use to set the similarity translation prop
float angleRad = float(bestRastIndex)*(M_PI*2.0)/float(packingPar.rotationNum);
Box2f bb;
std::vector<Point2f> points = polyVec[i].getPoints();
for(size_t i=0;i<points.size();++i) {
Point2f pp=points[i];
pp.Rotate(angleRad);
bb.Add(pp);
}
//associate the poly to the container where it fitted best
polyToContainer[i] = bestContainer;
//now we have bestPolyX/bestRastIndex
//we have to update the similarities vector accordingly!
float polyXInImgCoords = bestPolyX*packingPar.cellSize;
float scaledBBWidth = bb.DimX()*scaleFactor;
float polyWidthInImgCoords = polyVec[i].gridWidth(bestRastIndex)*packingPar.cellSize;
float offsetX = (polyWidthInImgCoords - ceil(scaledBBWidth))/2.0;
float scaledBBMinX = bb.min.X()*scaleFactor;
//note: bestPolyY is 0 if the poly is at the bottom of the grid
float imgHeight = containerSizes[bestContainer].Y();
float polyYInImgCoords = bestPolyY*packingPar.cellSize;
float polyHeightInImgCoords = polyVec[i].gridHeight(bestRastIndex)*packingPar.cellSize;
float topPolyYInImgCoords = polyYInImgCoords + polyHeightInImgCoords;
float scaledBBHeight = bb.DimY()*scaleFactor;
float offsetY = (polyHeightInImgCoords - ceil(scaledBBHeight))/2.0;
float scaledBBMinY = bb.min.Y()*scaleFactor;
trVec[i].tra = Point2f(polyXInImgCoords - scaledBBMinX + offsetX,
imgHeight - topPolyYInImgCoords - scaledBBMinY + offsetY);
trVec[i].rotRad = angleRad;
trVec[i].sca = scaleFactor;
}
//sort polyToContainer and trVec so that we have them ordered for dumping
// printf("SUCCESSFULLY PACKED with scaleFactor %f\n", scaleFactor);
return true;
}
static void printVector(std::vector<int>& vec) {
for (size_t i = 0; i < vec.size(); i++) {
printf("%d", vec[i]);
}
printf("\n");
}
}; // end class
} // end namespace vcg
#endif // NEW_POLYPACKER_H