288 lines
9.4 KiB
C++
288 lines
9.4 KiB
C++
/*#***************************************************************************
|
|
* Geodesic.h o o *
|
|
* o o *
|
|
* Visual Computing Group _ O _ *
|
|
* IEI Institute, CNUCE Institute, CNR Pisa \/)\/ *
|
|
* /\/| *
|
|
* Copyright(C) 1999 by Paolo Cignoni, | *
|
|
* All rights reserved. \ *
|
|
* *
|
|
* Permission to use, copy, modify, distribute and sell this software and *
|
|
* its documentation for any purpose is hereby granted without fee, provided *
|
|
* that the above copyright notice appear in all copies and that both that *
|
|
* copyright notice and this permission notice appear in supporting *
|
|
* documentation. the author makes no representations about the suitability *
|
|
* of this software for any purpose. It is provided "as is" without express *
|
|
* or implied warranty. *
|
|
* *
|
|
***************************************************************************#*/
|
|
/*#**************************************************************************
|
|
History
|
|
$Log: not supported by cvs2svn $
|
|
|
|
*#**************************************************************************/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
#include <vcg/container/simple_temporary_data.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/math/base.h>
|
|
#include <deque>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <functional>
|
|
|
|
namespace vcg{
|
|
template <class MeshType>
|
|
class Geo{
|
|
|
|
public:
|
|
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
|
|
template <class MeshType>
|
|
struct TempData{
|
|
TempData(){}
|
|
TempData(const double & d_){d=d_;visited=false;}
|
|
double d;
|
|
bool visited;
|
|
};
|
|
|
|
typedef SimpleTempData<std::vector<typename MeshType::VertexType>, TempData<MeshType> > TempDataType;
|
|
static TempDataType & TD(){ static TempDataType td; return td;}
|
|
|
|
|
|
struct pred: public std::binary_function<VertexPointer,VertexPointer,bool>{
|
|
bool operator()(const VertexPointer& v0, const VertexPointer& v1) const
|
|
{return (Geo<MeshType>::TD()[v0].d > Geo<MeshType>::TD()[v1].d);}
|
|
};
|
|
|
|
|
|
static typename MeshType::VertexPointer BuildSP(
|
|
MeshType & m,
|
|
std::vector<typename MeshType::VertexPointer> & _frontier,
|
|
double & max_distance,
|
|
bool fartestOnBorder = false
|
|
)
|
|
{
|
|
TD().c = &m.vert;
|
|
|
|
bool isLeaf;
|
|
std::vector<typename MeshType::VertexPointer> frontier;
|
|
std::vector<typename MeshType::VertexPointer> :: iterator tmp;
|
|
frontier.clear();
|
|
//Requirements
|
|
assert(m.HasVFTopology());
|
|
|
|
if(m.vn==0) return NULL;
|
|
|
|
MeshType::VertexIterator ii;
|
|
std::list<typename MeshType::VertexPointer> children;
|
|
typename MeshType::VertexPointer curr,fartest,pw1;
|
|
bool toQueue;
|
|
|
|
TD().Start(TempData<MeshType>(-1.0));
|
|
|
|
std::list<typename MeshType::VertexPointer>::iterator is;
|
|
std::deque<typename MeshType::VertexPointer> leaves;
|
|
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > expansion;
|
|
|
|
std::vector <typename MeshType::VertexPointer >::const_iterator ifr;
|
|
face::VFIterator<typename MeshType::FaceType> x;int k;
|
|
typename MeshType::VertexPointer pw;
|
|
|
|
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr){
|
|
TD()[*ifr].visited= true;
|
|
TD()[*ifr].d = 0.0;
|
|
}
|
|
|
|
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr)
|
|
{
|
|
// determina la distanza dei vertici della fan
|
|
for( x.f = (*ifr)->VFp(), x.z = (*ifr)->VFi(); x.f!=0; ++x )
|
|
for(k=0;k<2;++k)
|
|
{
|
|
if(k==0) pw = x.f->V1(x.z);
|
|
else pw = x.f->V2(x.z);
|
|
|
|
if(TD()[pw].d ==-1){
|
|
TD()[pw].d = Distance(pw->cP(),(*ifr)->cP());
|
|
frontier.push_back(pw);
|
|
}
|
|
}
|
|
}
|
|
// initialize Heap
|
|
make_heap(frontier.begin(),frontier.end(),pred());
|
|
double curr_d,d_curr = 0.0;
|
|
max_distance=0.0;
|
|
std::vector<typename MeshType::VertexPointer >:: iterator iv;
|
|
|
|
while(!frontier.empty())
|
|
{ //printf("size: %d\n", frontier.size());
|
|
expansion.clear();
|
|
pop_heap(frontier.begin(),frontier.end(),pred());
|
|
curr = frontier.back();
|
|
frontier.pop_back();
|
|
d_curr = TD()[curr].d;
|
|
TD()[curr].visited = true;
|
|
|
|
isLeaf = (!fartestOnBorder || curr->IsB());
|
|
|
|
face::VFIterator<typename MeshType::FaceType> x;int k;
|
|
|
|
|
|
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
|
for(k=0;k<2;++k)
|
|
{
|
|
if(k==0) {
|
|
pw = x.f->V1(x.z);
|
|
pw1=x.f->V2(x.z);
|
|
}
|
|
else {
|
|
pw = x.f->V2(x.z);
|
|
pw1=x.f->V1(x.z);
|
|
}
|
|
|
|
const double & d_pw1 = TD()[pw1].d;
|
|
|
|
if((!TD()[pw1].visited ) || d_curr == 0.0)
|
|
{
|
|
if(TD()[pw].d == -1){
|
|
curr_d = TD()[curr].d + (pw->P()-curr->P()).Norm();
|
|
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
assert( TD()[pw1].d != -1);
|
|
assert( (curr!=pw) && (pw!=pw1) && (pw1 != curr));
|
|
assert(d_pw1!=-1.0);
|
|
|
|
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
|
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
|
//************** (vedi figura in file distance.gif)
|
|
Point3<MeshType::ScalarType> w_c = pw->cP()- curr->cP();
|
|
Point3<MeshType::ScalarType> w_w1 = pw->cP()- pw1->cP();
|
|
Point3<MeshType::ScalarType> w1_c = pw1->cP()- curr->cP();
|
|
|
|
double ew_c = (w_c).Norm();
|
|
double ew_w1 = (w_w1).Norm();
|
|
double ec_w1 = (w1_c).Norm();
|
|
double alpha,alpha_, beta,beta_,theta_c,theta,h,delta,s,a,b;
|
|
|
|
alpha = acos((w_c*w1_c)/(ew_c*ec_w1));
|
|
s = (d_curr + d_pw1+ec_w1)/2;
|
|
a = s/ec_w1;
|
|
b = a*s;
|
|
alpha_ = 2*acos ( math::Min(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
|
|
|
if ( alpha+alpha_ > M_PI){
|
|
curr_d = d_curr + ew_c;
|
|
}else
|
|
{
|
|
beta_ = 2*acos ( math::Min(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
|
beta = acos((w_w1)*(-w1_c)/(ew_w1*ec_w1));
|
|
|
|
if ( beta+beta_ > M_PI)
|
|
curr_d = d_pw1 + ew_w1;
|
|
else
|
|
{
|
|
theta = M_PI-alpha-alpha_;
|
|
delta = cos(theta)* ew_c;
|
|
h = sin(theta)* ew_c;
|
|
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
|
}
|
|
}
|
|
//**************************************************************************************
|
|
toQueue = (TD()[(pw)].d==-1);
|
|
|
|
if(toQueue){// se non e'gia' in coda ce lo mette
|
|
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
|
|
}else
|
|
{
|
|
if( TD()[(pw)].d > curr_d )
|
|
TD()[(pw)].d = curr_d;
|
|
}
|
|
|
|
if(isLeaf){
|
|
if(d_curr > max_distance){
|
|
max_distance = d_curr;
|
|
fartest = curr;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > ::iterator i;
|
|
for(i = expansion.begin(); i!= expansion.end(); ++i)
|
|
{
|
|
TD()[(*i).first].d = (*i).second;
|
|
frontier.push_back((*i).first);
|
|
push_heap(frontier.begin(),frontier.end(),pred());
|
|
} // end for
|
|
}// end while
|
|
|
|
// scrivi le distanze sul campo qualita' (nn: farlo parametrico)
|
|
MeshType::VertexIterator vi;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
(*vi).Q() = TD()[&(*vi)].d;
|
|
|
|
|
|
TD().Stop();
|
|
|
|
return fartest;
|
|
|
|
}
|
|
|
|
|
|
public:
|
|
static void FartestPoint( MeshType & m,
|
|
std::vector<typename MeshType::VertexPointer> & fro,//insieme di vertici da cui trovare le distanze
|
|
typename MeshType::VertexPointer & fartest, //punto piu'lontano
|
|
double & distance){ //distaza geodesica
|
|
fartest = BuildSP(m,fro,distance,false);
|
|
}
|
|
static void FartestBPoint(
|
|
MeshType & m,
|
|
std::vector<typename MeshType::VertexPointer> & fro, //insieme di vertici da cui trovare le distanze
|
|
typename MeshType::VertexPointer & fartest, //punto piu'lontano
|
|
double & distance){
|
|
fartest = BuildSP(m,fro,distance,true);
|
|
}
|
|
|
|
static void DistanceFromBorder( MeshType & m,
|
|
typename MeshType::VertexPointer & v0, //ritorna il vertice piu'lontano da ogni punto sul bordo
|
|
typename MeshType::VertexPointer & v1, // ritorna il vertice di bordo piu'vicino a v0
|
|
double & distance // distanza geodesica tra v0 e v1
|
|
)
|
|
{
|
|
std::vector<typename MeshType::VertexPointer> fro;
|
|
MeshType::VertexIterator vi;
|
|
MeshType::VertexPointer fartest;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if( (*vi).IsB())
|
|
fro.push_back(&(*vi));
|
|
FartestPoint(m,fro,fartest,distance);
|
|
}
|
|
|
|
static void MostInternal( MeshType & m,
|
|
typename MeshType::VertexPointer & v0, //ritorna il vertice piu'lontano da ogni punto sul bordo
|
|
typename MeshType::VertexPointer & v1, // ritorna il vertice di bordo piu'vicino a v0
|
|
double & distance // distanza geodesica tra v0 e v1
|
|
)
|
|
{
|
|
std::vector<typename MeshType::VertexPointer> fro;
|
|
MeshType::VertexIterator vi;
|
|
MeshType::VertexPointer fartest;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if( (*vi).IsB())
|
|
fro.push_back(&(*vi));
|
|
FartestPoint(m,fro,fartest,distance);
|
|
fro.clear();
|
|
fro.push_back(fartest);
|
|
FartestBPoint(m,fro,fartest,distance);
|
|
}
|
|
|
|
};
|
|
};// end namespace
|