214 lines
7.0 KiB
C++
214 lines
7.0 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
#ifndef __VCGLIB_INTERSECTION_2
|
|
#define __VCGLIB_INTERSECTION_2
|
|
#include <vcg/space/line2.h>
|
|
#include <vcg/space/ray2.h>
|
|
#include <vcg/space/segment2.h>
|
|
#include <vcg/space/point2.h>
|
|
#include <vcg/space/triangle2.h>
|
|
#include <vcg/space/box2.h>
|
|
|
|
|
|
|
|
|
|
namespace vcg {
|
|
/** \addtogroup space */
|
|
/*@{*/
|
|
/**
|
|
Function computing the intersection between couple of geometric primitives in
|
|
2 dimension
|
|
*/
|
|
|
|
/// return true if the algle is convex (right rotation)
|
|
template<class SCALAR_TYPE>
|
|
inline bool Convex(const Point2<SCALAR_TYPE> & p0,const Point2<SCALAR_TYPE> & p1,const Point2<SCALAR_TYPE> & p2)
|
|
{
|
|
const SCALAR_TYPE EPSILON= SCALAR_TYPE(1e-8);
|
|
return (((p0-p1)^(p2-p1))<=EPSILON);
|
|
}
|
|
|
|
///return if exist the intersection point
|
|
///between 2 lines in a 2d plane
|
|
template<class SCALAR_TYPE>
|
|
inline bool LineLineIntersection(const vcg::Line2<SCALAR_TYPE> & l0,
|
|
const vcg::Line2<SCALAR_TYPE> & l1,
|
|
Point2<SCALAR_TYPE> &p)
|
|
{
|
|
const SCALAR_TYPE EPSILON= SCALAR_TYPE(1e-8);
|
|
///first line
|
|
SCALAR_TYPE x1=l0.Origin().X();
|
|
SCALAR_TYPE y1=l0.Origin().Y();
|
|
SCALAR_TYPE x2=x1+l0.Direction().X();
|
|
SCALAR_TYPE y2=y1+l0.Direction().Y();
|
|
|
|
///second line
|
|
SCALAR_TYPE x3=l1.Origin().X();
|
|
SCALAR_TYPE y3=l1.Origin().Y();
|
|
SCALAR_TYPE x4=x3+l1.Direction().X();
|
|
SCALAR_TYPE y4=y3+l1.Direction().Y();
|
|
|
|
///then find intersection
|
|
|
|
///denominator
|
|
SCALAR_TYPE den=((x1-x2)*(y3-y4))-((y1-y2)*(x3-x4));
|
|
if (fabs(den)<EPSILON)
|
|
return false;
|
|
|
|
SCALAR_TYPE d0=(x1*y2)-(y1*x2);
|
|
SCALAR_TYPE d1=(x3*y4)-(y3*x4);
|
|
SCALAR_TYPE numx=(d0*(x3-x4))-(d1*(x1-x2));
|
|
SCALAR_TYPE numy=(d0*(y3-y4))-(d1*(y1-y2));
|
|
|
|
p.X()=numx/den;
|
|
p.Y()=numy/den;
|
|
return true;
|
|
}
|
|
|
|
///return if exist the intersection point
|
|
///between 2 lines in a 2d plane
|
|
template<class SCALAR_TYPE>
|
|
inline bool RayLineIntersection(const vcg::Line2<SCALAR_TYPE> & l,
|
|
const vcg::Ray2<SCALAR_TYPE> & r,
|
|
Point2<SCALAR_TYPE> &p)
|
|
{
|
|
///construct line from ray
|
|
vcg::Line2<SCALAR_TYPE> l_test;
|
|
l_test.Set(r.Origin(),r.Direction());
|
|
if (!LineLineIntersection(l,l_test,p))
|
|
return false;
|
|
Point2<SCALAR_TYPE> dir=p-r.Origin();
|
|
dir.Normalize();
|
|
return (dir*r.Direction()>0);
|
|
}
|
|
|
|
|
|
/// interseciton between point and triangle
|
|
template<class SCALAR_TYPE>
|
|
inline bool RaySegmentIntersection(const vcg::Ray2<SCALAR_TYPE> & r,
|
|
const vcg::Segment2<SCALAR_TYPE> &seg,
|
|
Point2<SCALAR_TYPE> &p_inters)
|
|
{
|
|
///first compute intersection between lines
|
|
vcg::Line2<SCALAR_TYPE> line2;
|
|
line2.SetOrigin(seg.P0());
|
|
vcg::Point2<SCALAR_TYPE> dir=seg.P1()-seg.P0();
|
|
dir.Normalize();
|
|
line2.SetDirection(dir);
|
|
if(!RayLineIntersection<SCALAR_TYPE>(line2,r,p_inters))
|
|
return false;
|
|
///then test if intersection point is nearest
|
|
///to both extremes then lenght of the segment
|
|
SCALAR_TYPE d0=(seg.P1()-p_inters).Norm();
|
|
SCALAR_TYPE d1=(seg.P0()-p_inters).Norm();
|
|
SCALAR_TYPE lenght=(seg.P0()-seg.P1()).Norm();
|
|
return ((d0<lenght)&&(d1<lenght));
|
|
}
|
|
|
|
/// interseciton between point and triangle
|
|
template<class SCALAR_TYPE>
|
|
inline bool LineSegmentIntersection(const vcg::Line2<SCALAR_TYPE> & line,
|
|
const vcg::Segment2<SCALAR_TYPE> &seg,
|
|
Point2<SCALAR_TYPE> &p_inters)
|
|
{
|
|
///first compute intersection between lines
|
|
vcg::Line2<SCALAR_TYPE> line2;
|
|
line2.SetOrigin(seg.P0());
|
|
vcg::Point2<SCALAR_TYPE> dir=seg.P1()-seg.P0();
|
|
dir.Normalize();
|
|
line2.SetDirection(dir);
|
|
if(!LineLineIntersection(line,line2,p_inters))
|
|
return false;
|
|
///then test if intersection point is nearest
|
|
///to both extremes then lenght of the segment
|
|
SCALAR_TYPE d0=(seg.P1()-p_inters).Norm();
|
|
SCALAR_TYPE d1=(seg.P0()-p_inters).Norm();
|
|
SCALAR_TYPE lenght=(seg.P0()-seg.P1()).Norm();
|
|
return ((d0<lenght)&&(d1<lenght));
|
|
}
|
|
|
|
/// interseciton between point and triangle
|
|
template<class SCALAR_TYPE>
|
|
inline bool SegmentSegmentIntersection(const vcg::Segment2<SCALAR_TYPE> &seg0,
|
|
const vcg::Segment2<SCALAR_TYPE> &seg1,
|
|
Point2<SCALAR_TYPE> &p_inters)
|
|
{
|
|
///test intersection of bbox
|
|
vcg::Box2<SCALAR_TYPE> bb0,bb1;
|
|
bb0.Add(seg0.P0());
|
|
bb0.Add(seg0.P1());
|
|
bb1.Add(seg1.P0());
|
|
bb1.Add(seg1.P1());
|
|
if (!bb0.Collide(bb1))
|
|
return false;
|
|
else
|
|
{
|
|
///first compute intersection between lines
|
|
vcg::Line2<SCALAR_TYPE> l0,l1;
|
|
|
|
l0.SetOrigin(seg0.P0());
|
|
vcg::Point2<SCALAR_TYPE> dir0=seg0.P1()-seg0.P0();
|
|
dir0.Normalize();
|
|
l0.SetDirection(dir0);
|
|
l1.SetOrigin(seg1.P0());
|
|
vcg::Point2<SCALAR_TYPE> dir1=seg1.P1()-seg1.P0();
|
|
dir1.Normalize();
|
|
l1.SetDirection(dir1);
|
|
return ((LineSegmentIntersection<SCALAR_TYPE>(l0,seg1,p_inters))&&
|
|
(LineSegmentIntersection<SCALAR_TYPE>(l1,seg0,p_inters)));
|
|
}
|
|
}
|
|
|
|
/// interseciton between point and triangle
|
|
template<class SCALAR_TYPE>
|
|
inline bool IsInsideTrianglePoint( const Triangle2<SCALAR_TYPE> & t,const Point2<SCALAR_TYPE> & p)
|
|
{
|
|
Point2<SCALAR_TYPE> p0=t.P0(0);
|
|
Point2<SCALAR_TYPE> p1=t.P0(1);
|
|
Point2<SCALAR_TYPE> p2=t.P0(2);
|
|
|
|
///first test with bounding box
|
|
vcg::Box2<SCALAR_TYPE> b2d;
|
|
b2d.Add(p0);
|
|
b2d.Add(p1);
|
|
b2d.Add(p2);
|
|
if (!b2d.IsIn(p))
|
|
return false;
|
|
|
|
///then text convex
|
|
if (!Convex(p0,p1,p2))
|
|
std::swap<Point2<SCALAR_TYPE> >(p1,p2);
|
|
return((Convex(p,p0,p1))&&(Convex(p,p1,p2))&&(Convex(p,p2,p0)));
|
|
//return((Convex(p,p0,p1))&&(Convex(p,p1,p2))&&(Convex(p,p2,p0)));
|
|
}
|
|
/*@}*/
|
|
} // end namespace
|
|
#endif
|