594 lines
16 KiB
C++
594 lines
16 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
#ifndef __VCGLIB_MATRIX33_H
|
|
#define __VCGLIB_MATRIX33_H
|
|
|
|
#include <stdio.h>
|
|
#include <vcg/math/matrix44.h>
|
|
#include <vcg/space/point3.h>
|
|
#include <vector>
|
|
|
|
namespace vcg {
|
|
|
|
template<class S>
|
|
/** @name Matrix33
|
|
Class Matrix33.
|
|
This is the class for definition of a matrix 3x3.
|
|
@param S (Template Parameter) Specifies the ScalarType field.
|
|
*/
|
|
class Matrix33
|
|
{
|
|
public:
|
|
typedef S ScalarType;
|
|
|
|
/// Default constructor
|
|
inline Matrix33() {}
|
|
|
|
/// Copy constructor
|
|
Matrix33( const Matrix33 & m )
|
|
{
|
|
for(int i=0;i<9;++i)
|
|
a[i] = m.a[i];
|
|
}
|
|
|
|
/// create from array
|
|
Matrix33( const S * v )
|
|
{
|
|
for(int i=0;i<9;++i) a[i] = v[i];
|
|
}
|
|
|
|
/// create from Matrix44 excluding row and column k
|
|
Matrix33 (const Matrix44<S> & m, const int & k)
|
|
{
|
|
int i,j, r=0, c=0;
|
|
for(i = 0; i< 4;++i)if(i!=k){c=0;
|
|
for(j=0; j < 4;++j)if(j!=k)
|
|
{ (*this)[r][c] = m[i][j]; ++c;}
|
|
++r;
|
|
}
|
|
}
|
|
|
|
template <class EigenMatrix33Type>
|
|
void ToEigenMatrix(EigenMatrix33Type & m) const {
|
|
for(int i = 0; i < 3; i++)
|
|
for(int j = 0; j < 3; j++)
|
|
m(i,j)=(*this)[i][j];
|
|
}
|
|
|
|
template <class EigenMatrix33Type>
|
|
void FromEigenMatrix(const EigenMatrix33Type & m){
|
|
for(int i = 0; i < 3; i++)
|
|
for(int j = 0; j < 3; j++)
|
|
(*this)[i][j]=m(i,j);
|
|
}
|
|
|
|
/// Number of columns
|
|
inline unsigned int ColumnsNumber() const
|
|
{
|
|
return 3;
|
|
};
|
|
|
|
/// Number of rows
|
|
inline unsigned int RowsNumber() const
|
|
{
|
|
return 3;
|
|
};
|
|
|
|
/// Assignment operator
|
|
Matrix33 & operator = ( const Matrix33 & m )
|
|
{
|
|
for(int i=0;i<9;++i)
|
|
a[i] = m.a[i];
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
/// Operatore di indicizzazione
|
|
inline S * operator [] ( const int i )
|
|
{
|
|
return a+i*3;
|
|
}
|
|
/// Operatore const di indicizzazione
|
|
inline const S * operator [] ( const int i ) const
|
|
{
|
|
return a+i*3;
|
|
}
|
|
|
|
|
|
/// Modificatore somma per matrici 3x3
|
|
Matrix33 & operator += ( const Matrix33 &m )
|
|
{
|
|
for(int i=0;i<9;++i)
|
|
a[i] += m.a[i];
|
|
return *this;
|
|
}
|
|
|
|
|
|
/// Modificatore sottrazione per matrici 3x3
|
|
Matrix33 & operator -= ( const Matrix33 &m )
|
|
{
|
|
for(int i=0;i<9;++i)
|
|
a[i] -= m.a[i];
|
|
return *this;
|
|
}
|
|
|
|
/// Modificatore divisione per scalare
|
|
Matrix33 & operator /= ( const S &s )
|
|
{
|
|
for(int i=0;i<9;++i)
|
|
a[i] /= s;
|
|
return *this;
|
|
}
|
|
|
|
|
|
/// Modificatore prodotto per matrice
|
|
Matrix33 operator * ( const Matrix33< S> & t ) const
|
|
{
|
|
Matrix33<S> r;
|
|
|
|
int i,j;
|
|
for(i=0;i<3;++i)
|
|
for(j=0;j<3;++j)
|
|
r[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j];
|
|
|
|
return r;
|
|
}
|
|
|
|
/// Modificatore prodotto per matrice
|
|
void operator *=( const Matrix33< S> & t )
|
|
{
|
|
Matrix33<S> r;
|
|
int i,j;
|
|
for(i=0;i<3;++i)
|
|
for(j=0;j<3;++j)
|
|
r[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j];
|
|
for(i=0;i<9;++i) this->a[i] = r.a[i];
|
|
}
|
|
|
|
/// Modificatore prodotto per costante
|
|
Matrix33 & operator *= ( const S t )
|
|
{
|
|
for(int i=0;i<9;++i)
|
|
a[i] *= t;
|
|
return *this;
|
|
}
|
|
|
|
/// Operatore prodotto per costante
|
|
Matrix33 operator * ( const S t ) const
|
|
{
|
|
Matrix33<S> r;
|
|
for(int i=0;i<9;++i)
|
|
r.a[i] = a[i]* t;
|
|
|
|
return r;
|
|
}
|
|
|
|
/// Operatore sottrazione per matrici 3x3
|
|
Matrix33 operator - ( const Matrix33 &m ) const
|
|
{
|
|
Matrix33<S> r;
|
|
for(int i=0;i<9;++i)
|
|
r.a[i] = a[i] - m.a[i];
|
|
|
|
return r;
|
|
}
|
|
/// Operatore sottrazione per matrici 3x3
|
|
Matrix33 operator + ( const Matrix33 &m ) const
|
|
{
|
|
Matrix33<S> r;
|
|
for(int i=0;i<9;++i)
|
|
r.a[i] = a[i] + m.a[i];
|
|
|
|
return r;
|
|
}
|
|
/** Operatore per il prodotto matrice-vettore.
|
|
@param v A point in $R^{3}$
|
|
@return Il vettore risultante in $R^{3}$
|
|
*/
|
|
Point3<S> operator * ( const Point3<S> & v ) const
|
|
{
|
|
Point3<S> t;
|
|
|
|
t[0] = a[0]*v[0] + a[1]*v[1] + a[2]*v[2];
|
|
t[1] = a[3]*v[0] + a[4]*v[1] + a[5]*v[2];
|
|
t[2] = a[6]*v[0] + a[7]*v[1] + a[8]*v[2];
|
|
return t;
|
|
}
|
|
|
|
void OuterProduct(Point3<S> const &p0, Point3<S> const &p1) {
|
|
Point3<S> row;
|
|
row = p1*p0[0];
|
|
a[0] = row[0];a[1] = row[1];a[2] = row[2];
|
|
row = p1*p0[1];
|
|
a[3] = row[0]; a[4] = row[1]; a[5] = row[2];
|
|
row = p1*p0[2];
|
|
a[6] = row[0];a[7] = row[1];a[8] = row[2];
|
|
}
|
|
|
|
Matrix33 & SetZero() {
|
|
for(int i=0;i<9;++i) a[i] =0;
|
|
return (*this);
|
|
}
|
|
Matrix33 & SetIdentity() {
|
|
for(int i=0;i<9;++i) a[i] =0;
|
|
a[0]=a[4]=a[8]=1.0;
|
|
return (*this);
|
|
}
|
|
|
|
Matrix33 & SetRotateRad(S angle, const Point3<S> & axis )
|
|
{
|
|
S c = cos(angle);
|
|
S s = sin(angle);
|
|
S q = 1-c;
|
|
Point3<S> t = axis;
|
|
t.Normalize();
|
|
a[0] = t[0]*t[0]*q + c;
|
|
a[1] = t[0]*t[1]*q - t[2]*s;
|
|
a[2] = t[0]*t[2]*q + t[1]*s;
|
|
a[3] = t[1]*t[0]*q + t[2]*s;
|
|
a[4] = t[1]*t[1]*q + c;
|
|
a[5] = t[1]*t[2]*q - t[0]*s;
|
|
a[6] = t[2]*t[0]*q -t[1]*s;
|
|
a[7] = t[2]*t[1]*q +t[0]*s;
|
|
a[8] = t[2]*t[2]*q +c;
|
|
return (*this);
|
|
}
|
|
Matrix33 & SetRotateDeg(S angle, const Point3<S> & axis ){
|
|
return SetRotateRad(math::ToRad(angle),axis);
|
|
}
|
|
|
|
/// Funzione per eseguire la trasposta della matrice
|
|
Matrix33 & Transpose()
|
|
{
|
|
std::swap(a[1],a[3]);
|
|
std::swap(a[2],a[6]);
|
|
std::swap(a[5],a[7]);
|
|
return *this;
|
|
}
|
|
|
|
// for the transistion to eigen
|
|
Matrix33 transpose() const
|
|
{
|
|
Matrix33 res = *this;
|
|
res.Transpose();
|
|
return res;
|
|
}
|
|
|
|
void transposeInPlace() { this->Transpose(); }
|
|
|
|
/// Funzione per costruire una matrice diagonale dati i tre elem.
|
|
Matrix33 & SetDiagonal(S *v)
|
|
{int i,j;
|
|
for(i=0;i<3;i++)
|
|
for(j=0;j<3;j++)
|
|
if(i==j) (*this)[i][j] = v[i];
|
|
else (*this)[i][j] = 0;
|
|
return *this;
|
|
}
|
|
|
|
|
|
/// Assegna l'n-simo vettore colonna
|
|
void SetColumn(const int n, S* v){
|
|
assert( (n>=0) && (n<3) );
|
|
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
|
|
};
|
|
|
|
/// Assegna l'n-simo vettore riga
|
|
void SetRow(const int n, S* v){
|
|
assert( (n>=0) && (n<3) );
|
|
int m=n*3;
|
|
a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2];
|
|
};
|
|
|
|
/// Assegna l'n-simo vettore colonna
|
|
void SetColumn(const int n, const Point3<S> v){
|
|
assert( (n>=0) && (n<3) );
|
|
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
|
|
};
|
|
|
|
/// Assegna l'n-simo vettore riga
|
|
void SetRow(const int n, const Point3<S> v){
|
|
assert( (n>=0) && (n<3) );
|
|
int m=n*3;
|
|
a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2];
|
|
};
|
|
|
|
/// Restituisce l'n-simo vettore colonna
|
|
Point3<S> GetColumn(const int n) const {
|
|
assert( (n>=0) && (n<3) );
|
|
Point3<S> t;
|
|
t[0]=a[n]; t[1]=a[n+3]; t[2]=a[n+6];
|
|
return t;
|
|
};
|
|
|
|
/// Restituisce l'n-simo vettore riga
|
|
Point3<S> GetRow(const int n) const {
|
|
assert( (n>=0) && (n<3) );
|
|
Point3<S> t;
|
|
int m=n*3;
|
|
t[0]=a[m]; t[1]=a[m+1]; t[2]=a[m+2];
|
|
return t;
|
|
};
|
|
|
|
|
|
|
|
/// Funzione per il calcolo del determinante
|
|
S Determinant() const
|
|
{
|
|
return a[0]*(a[4]*a[8]-a[5]*a[7]) -
|
|
a[1]*(a[3]*a[8]-a[5]*a[6]) +
|
|
a[2]*(a[3]*a[7]-a[4]*a[6]) ;
|
|
}
|
|
|
|
// return the Trace of the matrix i.e. the sum of the diagonal elements
|
|
S Trace() const
|
|
{
|
|
return a[0]+a[4]+a[8];
|
|
}
|
|
|
|
/*
|
|
compute the matrix generated by the product of a * b^T
|
|
*/
|
|
void ExternalProduct(const Point3<S> &a, const Point3<S> &b)
|
|
{
|
|
for(int i=0;i<3;++i)
|
|
for(int j=0;j<3;++j)
|
|
(*this)[i][j] = a[i]*b[j];
|
|
}
|
|
|
|
/* Compute the Frobenius Norm of the Matrix
|
|
*/
|
|
ScalarType Norm()
|
|
{
|
|
ScalarType SQsum=0;
|
|
for(int i=0;i<3;++i)
|
|
for(int j=0;j<3;++j)
|
|
SQsum += a[i]*a[i];
|
|
return (math::Sqrt(SQsum));
|
|
}
|
|
|
|
|
|
/*
|
|
It compute the covariance matrix of a set of 3d points. Returns the barycenter
|
|
*/
|
|
template <class STLPOINTCONTAINER >
|
|
void Covariance(const STLPOINTCONTAINER &points, Point3<S> &bp) {
|
|
assert(!points.empty());
|
|
typedef typename STLPOINTCONTAINER::const_iterator PointIte;
|
|
// first cycle: compute the barycenter
|
|
bp.SetZero();
|
|
for( PointIte pi = points.begin(); pi != points.end(); ++pi) bp+= (*pi);
|
|
bp/=points.size();
|
|
// second cycle: compute the covariance matrix
|
|
this->SetZero();
|
|
vcg::Matrix33<ScalarType> A;
|
|
for( PointIte pi = points.begin(); pi != points.end(); ++pi) {
|
|
Point3<S> p = (*pi)-bp;
|
|
A.OuterProduct(p,p);
|
|
(*this)+= A;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
It compute the cross covariance matrix of two set of 3d points P and X;
|
|
it returns also the barycenters of P and X.
|
|
fonte:
|
|
|
|
Besl, McKay
|
|
A method for registration o f 3d Shapes
|
|
IEEE TPAMI Vol 14, No 2 1992
|
|
|
|
*/
|
|
template <class STLPOINTCONTAINER >
|
|
void CrossCovariance(const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X,
|
|
Point3<S> &bp, Point3<S> &bx)
|
|
{
|
|
SetZero();
|
|
assert(P.size()==X.size());
|
|
bx.SetZero();
|
|
bp.SetZero();
|
|
Matrix33<S> tmp;
|
|
typename std::vector <Point3<S> >::const_iterator pi,xi;
|
|
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
|
|
bp+=*pi;
|
|
bx+=*xi;
|
|
tmp.ExternalProduct(*pi,*xi);
|
|
(*this)+=tmp;
|
|
}
|
|
bp/=P.size();
|
|
bx/=X.size();
|
|
(*this)/=P.size();
|
|
tmp.ExternalProduct(bp,bx);
|
|
(*this)-=tmp;
|
|
}
|
|
|
|
template <class STLPOINTCONTAINER, class STLREALCONTAINER>
|
|
void WeightedCrossCovariance(const STLREALCONTAINER & weights,
|
|
const STLPOINTCONTAINER &P,
|
|
const STLPOINTCONTAINER &X,
|
|
Point3<S> &bp,
|
|
Point3<S> &bx)
|
|
{
|
|
SetZero();
|
|
assert(P.size()==X.size());
|
|
bx.SetZero();
|
|
bp.SetZero();
|
|
Matrix33<S> tmp;
|
|
typename std::vector <Point3<S> >::const_iterator pi,xi;
|
|
typename STLREALCONTAINER::const_iterator pw;
|
|
|
|
for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){
|
|
bp+=(*pi);
|
|
bx+=(*xi);
|
|
}
|
|
bp/=P.size();
|
|
bx/=X.size();
|
|
|
|
for(pi=P.begin(),xi=X.begin(),pw = weights.begin();pi!=P.end();++pi,++xi,++pw){
|
|
|
|
tmp.ExternalProduct(((*pi)-(bp)),((*xi)-(bp)));
|
|
|
|
(*this)+=tmp*(*pw);
|
|
}
|
|
}
|
|
|
|
private:
|
|
S a[9];
|
|
};
|
|
|
|
///return the tranformation matrix to transform
|
|
///to the frame specified by the three vectors
|
|
template <class S>
|
|
vcg::Matrix33<S> TransformationMatrix(const vcg::Point3<S> dirX,
|
|
const vcg::Point3<S> dirY,
|
|
const vcg::Point3<S> dirZ)
|
|
{
|
|
vcg::Matrix33<S> Trans;
|
|
|
|
///it must have right orientation cause of normal
|
|
Trans[0][0]=dirX[0];
|
|
Trans[0][1]=dirX[1];
|
|
Trans[0][2]=dirX[2];
|
|
Trans[1][0]=dirY[0];
|
|
Trans[1][1]=dirY[1];
|
|
Trans[1][2]=dirY[2];
|
|
Trans[2][0]=dirZ[0];
|
|
Trans[2][1]=dirZ[1];
|
|
Trans[2][2]=dirZ[2];
|
|
|
|
/////then find the inverse
|
|
return (Trans);
|
|
}
|
|
template <class S>
|
|
Matrix33<S> Inverse(const Matrix33<S>&m)
|
|
{
|
|
Eigen::Matrix3d mm,mmi;
|
|
m.ToEigenMatrix(mm);
|
|
mmi=mm.inverse();
|
|
Matrix33<S> res;
|
|
res.FromEigenMatrix(mmi);
|
|
return res;
|
|
}
|
|
|
|
///given 2 vector centered into origin calculate the rotation matrix from first to the second
|
|
template <class S>
|
|
Matrix33<S> RotationMatrix(vcg::Point3<S> v0,vcg::Point3<S> v1,bool normalized=true)
|
|
{
|
|
typedef typename vcg::Point3<S> CoordType;
|
|
Matrix33<S> rotM;
|
|
const S epsilon=0.00001;
|
|
if (!normalized)
|
|
{
|
|
v0.Normalize();
|
|
v1.Normalize();
|
|
}
|
|
S dot=(v0*v1);
|
|
///control if there is no rotation
|
|
if (dot>((S)1-epsilon))
|
|
{
|
|
rotM.SetIdentity();
|
|
return rotM;
|
|
}
|
|
|
|
///find the axis of rotation
|
|
CoordType axis;
|
|
axis=v0^v1;
|
|
axis.Normalize();
|
|
|
|
///construct rotation matrix
|
|
S u=axis.X();
|
|
S v=axis.Y();
|
|
S w=axis.Z();
|
|
S phi=acos(dot);
|
|
S rcos = cos(phi);
|
|
S rsin = sin(phi);
|
|
|
|
rotM[0][0] = rcos + u*u*(1-rcos);
|
|
rotM[1][0] = w * rsin + v*u*(1-rcos);
|
|
rotM[2][0] = -v * rsin + w*u*(1-rcos);
|
|
rotM[0][1] = -w * rsin + u*v*(1-rcos);
|
|
rotM[1][1] = rcos + v*v*(1-rcos);
|
|
rotM[2][1] = u * rsin + w*v*(1-rcos);
|
|
rotM[0][2] = v * rsin + u*w*(1-rcos);
|
|
rotM[1][2] = -u * rsin + v*w*(1-rcos);
|
|
rotM[2][2] = rcos + w*w*(1-rcos);
|
|
|
|
return rotM;
|
|
}
|
|
|
|
///return the rotation matrix along axis
|
|
template <class S>
|
|
Matrix33<S> RotationMatrix(const vcg::Point3<S> &axis,
|
|
const float &angleRad)
|
|
{
|
|
vcg::Matrix44<S> matr44;
|
|
vcg::Matrix33<S> matr33;
|
|
matr44.SetRotateRad(angleRad,axis);
|
|
for (int i=0;i<3;i++)
|
|
for (int j=0;j<3;j++)
|
|
matr33[i][j]=matr44[i][j];
|
|
return matr33;
|
|
}
|
|
|
|
/// return a random rotation matrix, from the paper:
|
|
/// Fast Random Rotation Matrices, James Arvo
|
|
/// Graphics Gems III pp. 117-120
|
|
template <class S>
|
|
Matrix33<S> RandomRotation(){
|
|
S x1,x2,x3;
|
|
Matrix33<S> R,H,M,vv;
|
|
Point3<S> v;
|
|
R.SetIdentity();
|
|
H.SetIdentity();
|
|
x1 = rand()/S(RAND_MAX);
|
|
x2 = rand()/S(RAND_MAX);
|
|
x3 = rand()/S(RAND_MAX);
|
|
|
|
R[0][0] = cos(S(2)*M_PI*x1);
|
|
R[0][1] = sin(S(2)*M_PI*x1);
|
|
R[1][0] = - R[0][1];
|
|
R[1][1] = R[0][0];
|
|
|
|
v[0] = cos(2.0 * M_PI * x2)*sqrt(x3);
|
|
v[1] = sin(2.0 * M_PI * x2)*sqrt(x3);
|
|
v[2] = sqrt(1-x3);
|
|
|
|
vv.OuterProduct(v,v);
|
|
H -= vv*S(2);
|
|
M = H*R*S(-1);
|
|
return M;
|
|
}
|
|
|
|
///
|
|
typedef Matrix33<short> Matrix33s;
|
|
typedef Matrix33<int> Matrix33i;
|
|
typedef Matrix33<float> Matrix33f;
|
|
typedef Matrix33<double> Matrix33d;
|
|
|
|
} // end of namespace
|
|
|
|
#endif
|