vcglib/vcg/math/shot.h

429 lines
15 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.24 2008/02/22 17:41:48 ponchio
Changed to reflect quaternion toMatrix inversion.
Revision 1.23 2007/02/06 08:54:07 corsini
fix names
Revision 1.22 2007/02/05 14:17:21 corsini
add extrinsic parameters accessors
Revision 1.21 2006/12/18 16:02:55 matteodelle
minor eroor correction on variable names
Revision 1.20 2006/12/18 09:46:39 callieri
camera+shot revamp: changed field names to something with more sense, cleaning of various functions, correction of minor bugs/incongruences, removal of the infamous reference in shot.
Revision 1.19 2006/01/22 17:01:40 cignoni
Corrected intialization of flag, must be zero.
Revision 1.18 2005/12/12 16:53:43 callieri
corrected UnProject, it's necessary also a ZDepth value to perform inverse projection
Revision 1.17 2005/12/07 10:57:52 callieri
added commodity function ProjectWorldtoViewport() to obtain directly pixel indices without calling two separate function of two different objects
Revision 1.16 2005/12/02 16:14:35 callieri
in Shot<S>::Axis changed Row3 to GetRow3 . row3 was the old method name of Matrix44
Revision 1.15 2005/12/01 01:03:37 cignoni
Removed excess ';' from end of template functions, for gcc compiling
Revision 1.14 2005/11/23 14:18:35 ganovelli
added access to similarity (just for symmetry with Camera() )
Revision 1.13 2005/11/23 11:58:52 ganovelli
Empty constructor added, untemplated class Shotf and Shotd added
usage: Shotf myShot;
corrected member access rights
Revision 1.12 2005/07/11 13:12:35 cignoni
small gcc-related compiling issues (typenames,ending cr, initialization order)
Revision 1.11 2005/01/22 11:20:20 ponchio
<...Point3.h> -> <...point3.h>
Revision 1.10 2005/01/05 13:26:15 ganovelli
corretto cambiamento di sistema di rif.
Revision 1.9 2004/12/15 18:45:50 tommyfranken
*** empty log message ***
Revision 1.4 2004/10/07 14:41:31 fasano
Little fix on ViewPoint() method
Revision 1.3 2004/10/07 14:24:53 ganovelli
added LookAt,LookToward
Revision 1.2 2004/10/05 19:04:25 ganovelli
version 5-10-2004 in progress
Revision 1.1 2004/09/15 22:58:05 ganovelli
re-creation
Revision 1.2 2004/09/06 21:41:30 ganovelli
*** empty log message ***
Revision 1.1 2004/09/03 13:01:51 ganovelli
creation
****************************************************************************/
/** class Shot
The shot is made of two things:
* the Instrinsics paramaters, which are stored as a Camera type (check vcg/math/camera) and that
determines how a point in the frame of the camera is projected in the 2D projection plane
* the Extrinsics parameters, which are stored in the class Shot (che the type ReferenceFrame)
and that tell viewpoint and view direction.
The Extrinsics parameters are kept as a rotation matrix "rot" and a translation vector "tra"
NOTE: the translation matrix "tra" corresponds to -viewpoint while the rotation matrix
"rot" corresponds to the axis of the reference frame by row, i.e.
rot[0][0|1|2] == X axis
rot[1][0|1|2] == Y axis
rot[2][0|1|2] == Z axis
It follows that the matrix made with the upper left 3x3 equal to rot and the 4th colum equal to tra
and (0,0,0,1) in the bottom row transform a point from world coordiantes to the reference frame
of the shot.
**/
#ifndef __VCGLIB_SHOT
#define __VCGLIB_SHOT
#include <vcg/space/point2.h>
#include <vcg/space/point3.h>
#include <vcg/math/similarity.h>
#include <vcg/math/camera.h>
namespace vcg{
template <class S, class RotationType = Matrix44<S> >
class Shot {
public:
typedef Camera<S> CameraType;
typedef S ScalarType;
template <class ScalarType, class RotoType >
class ReferenceFrame {
friend class Shot<ScalarType, RotoType>;
RotoType rot; // rotation
Point3<S> tra; // viewpoint
public:
void SetIdentity(){ rot.SetIdentity(); tra = Point3<S>(0.0,0.0,0.0);}
void SetTra(const Point3<S> & tr) {tra = tr;}
void SetRot(const RotoType & rt) {rot = rt;}
Point3<ScalarType> Tra() const { return tra;}
RotoType Rot() const { return rot;}
};
Camera<S> Intrinsics; // the camera that made the shot
ReferenceFrame<S,RotationType> Extrinsics; // the position and orientation of the camera
Shot(Camera<S> c)
{
Intrinsics = c;
Extrinsics.SetIdentity();
}
Shot()
{
Extrinsics.SetIdentity();
}
/// GET the i-th axis of the coordinate system of the camera
vcg::Point3<S> Axis(const int & i)const;
/// GET the viewdir
const vcg::Point3<S> GetViewDir()const;
/// GET the viewpoint
const vcg::Point3<S> GetViewPoint()const;
/// SET the viewpoint
void SetViewPoint(const vcg::Point3<S> & viewpoint);
/// GET fov from focal
float GetFovFromFocal();
/// look at (point+up)
void LookAt(const vcg::Point3<S> & point,const vcg::Point3<S> & up);
/// look at (opengl-like)
void LookAt(const S & eye_x,const S & eye_y,const S & eye_z,
const S & at_x,const S & at_y,const S & at_z,
const S & up_x,const S & up_y,const S & up_z);
/// look towards (dir+up)
void LookTowards(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up);
/// convert a 3d point from world to camera coordinates
vcg::Point3<S> ConvertWorldToCameraCoordinates(const vcg::Point3<S> & p) const;
/// convert a 3d point from camera to world coordinates
vcg::Point3<S> ConvertCameraToWorldCoordinates(const vcg::Point3<S> & p) const;
/// convert a 3d point from camera to world coordinates, uses inverse instead of trranspose
/// for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
vcg::Point3<S> ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3<S> & p) const;
/// project a 3d point from world coordinates to 2d camera viewport (pixel)
vcg::Point2<S> Project(const vcg::Point3<S> & p) const;
/// inverse projection from 2d camera viewport (pixel) + Zdepth to 3d world coordinates
vcg::Point3<S> UnProject(const vcg::Point2<S> & p, const S & d) const;
/// inverse projection from 2d camera viewport (pixel) + Zdepth to 3d world coordinates, uses inverse instead of trranspose
/// for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
vcg::Point3<S> UnProject_Substitute(const vcg::Point2<S> & p, const S & d) const;
/// returns distance of point p from camera plane (z depth), used for unprojection
S Depth(const vcg::Point3<S> & p)const;
// accessors
public:
/* Returns the matrix M such that
3dpoint_in_world_coordinates = M * 3dpoint_in_local_coordinates
*/
Matrix44<S> GetExtrinsicsToWorldMatrix() const {
Matrix44<S> rotM ;
Extrinsics.rot.ToMatrix(rotM);
return Matrix44<S>().SetTranslate(Extrinsics.tra) * rotM.transpose();
}
/* Returns the matrix M such that
3dpoint_in_local_coordinates = M * 3dpoint_in_world_coordinates
*/
Matrix44<S> GetWorldToExtrinsicsMatrix() const {
Matrix44<S> rotM ;
Extrinsics.rot.ToMatrix(rotM);
return rotM * Matrix44<S>().SetTranslate(-Extrinsics.tra) ;
}
/* multiply the current reference frame for the matrix passed
note: it is up to the caller to check the the matrix passed is a pure rototraslation
the matrix can have a scaling component, but is assumed uniform over the rows
*/
void MultMatrix( vcg::Matrix44<S> m44)
{
Extrinsics.tra = m44 * Extrinsics.tra;
m44[0][3] = m44[1][3] = m44[2][3] = 0.0; //set no translation
const S k = m44.GetRow3(0).Norm(); //compute scaling (assumed uniform)
Extrinsics.rot = Extrinsics.rot * m44.transpose() * (1/k);
Extrinsics.rot.ElementAt(3,3)=S(1.0); //fix back after scaling
}
/* multiply the current reference frame for the similarity passed
note: it is up to the caller to check the the matrix passed is a pure rototraslation
*/
void MultSimilarity( const Similarity<S> & s){ MultMatrix(s.Matrix());}
bool IsValid() const
{
return Intrinsics.PixelSizeMm[0]>0 && Intrinsics.PixelSizeMm[1]>0;
}
}; // end class definition
template <class S, class RotationType>
const vcg::Point3<S> Shot<S,RotationType>::GetViewDir() const
{
return Extrinsics.Rot().GetRow3(2);
}
//---
/// GET the viewpoint
template <class S, class RotationType>
const vcg::Point3<S> Shot<S,RotationType>::GetViewPoint() const
{
return Extrinsics.tra;
}
/// SET the viewpoint
template <class S, class RotationType>
void Shot<S,RotationType>::SetViewPoint(const vcg::Point3<S> & viewpoint)
{
Extrinsics.SetTra( viewpoint );
}
//---
/// GET fov from focal
template <class S, class RotationType>
float Shot<S,RotationType>::GetFovFromFocal()
{
double viewportYMm= Intrinsics.PixelSizeMm[1]* Intrinsics.ViewportPx[1];
return 2*(vcg::math::ToDeg(atanf(viewportYMm/(2*Intrinsics.FocalMm))));
}
//---
/// GET the i-th axis of the coordinate system of the camera
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::Axis(const int & i) const
{
vcg::Matrix44<S> m;
Extrinsics.rot.ToMatrix(m);
vcg::Point3<S> aa = m.GetRow3(i);
return aa;
}
/// look at (point+up)
template <class S, class RotationType>
void Shot<S,RotationType>::LookAt(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up)
{
LookTowards(z_dir-GetViewPoint(),up);
}
/// look at (opengl-like)
template <class S, class RotationType>
void Shot<S,RotationType>::LookAt(const S & eye_x, const S & eye_y, const S & eye_z,
const S & at_x, const S & at_y, const S & at_z,
const S & up_x,const S & up_y,const S & up_z)
{
SetViewPoint(Point3<S>(eye_x,eye_y,eye_z));
LookAt(Point3<S>(at_x,at_y,at_z),Point3<S>(up_x,up_y,up_z));
}
/// look towards
template <class S, class RotationType>
void Shot<S,RotationType>::LookTowards(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up)
{
vcg::Point3<S> x_dir = up ^-z_dir;
vcg::Point3<S> y_dir = -z_dir ^x_dir;
Matrix44<S> m;
m.SetIdentity();
*(vcg::Point3<S> *)&m[0][0] = x_dir/x_dir.Norm();
*(vcg::Point3<S> *)&m[1][0] = y_dir/y_dir.Norm();
*(vcg::Point3<S> *)&m[2][0] = -z_dir/z_dir.Norm();
Extrinsics.rot.FromMatrix(m);
}
//--- Space transformation methods
/// convert a 3d point from world to camera coordinates
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::ConvertWorldToCameraCoordinates(const vcg::Point3<S> & p) const
{
Matrix44<S> rotM;
Extrinsics.rot.ToMatrix(rotM);
vcg::Point3<S> cp = rotM * (p - GetViewPoint() );
cp[2]=-cp[2]; // note: camera reference system is right handed
return cp;
}
/// convert a 3d point from camera to world coordinates
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::ConvertCameraToWorldCoordinates(const vcg::Point3<S> & p) const
{
Matrix44<S> rotM;
vcg::Point3<S> cp = p;
cp[2]=-cp[2]; // note: World reference system is left handed
Extrinsics.rot.ToMatrix(rotM);
cp = rotM.transpose() * cp + GetViewPoint();
return cp;
}
/// convert a 3d point from camera to world coordinates, uses inverse instead of trranspose
/// for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3<S> & p) const
{
Matrix44<S> rotM;
vcg::Point3<S> cp = p;
cp[2]=-cp[2]; // note: World reference system is left handed
Extrinsics.rot.ToMatrix(rotM);
cp = Inverse(rotM) * cp + GetViewPoint(); // use invert istead of transpose to dela with non-rigid cases
return cp;
}
/// project a 3d point from world coordinates to 2d camera viewport (pixel)
template <class S, class RotationType>
vcg::Point2<S> Shot<S,RotationType>::Project(const vcg::Point3<S> & p) const
{
Point3<S> cp = ConvertWorldToCameraCoordinates(p);
Point2<S> pp = Intrinsics.Project(cp);
Point2<S> vp = Intrinsics.LocalToViewportPx(pp);
return vp;
}
/// inverse projection from 2d camera viewport (pixel) + Zdepth to 3d world coordinates
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::UnProject(const vcg::Point2<S> & p, const S & d) const
{
Point2<S> lp = Intrinsics.ViewportPxToLocal(p);
Point3<S> cp = Intrinsics.UnProject(lp,d);
Point3<S> wp = ConvertCameraToWorldCoordinates(cp);
return wp;
}
/// inverse projection from 2d camera viewport (pixel) + Zdepth to 3d world coordinates, uses inverse instead of trranspose
/// for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
template <class S, class RotationType>
vcg::Point3<S> Shot<S,RotationType>::UnProject_Substitute(const vcg::Point2<S> & p, const S & d) const
{
Point2<S> lp = Intrinsics.ViewportPxToLocal(p);
Point3<S> cp = Intrinsics.UnProject(lp,d);
Point3<S> wp = ConvertCameraToWorldCoordinates_Substitute(cp);
return wp;
}
/// returns distance of point p from camera plane (z depth), used for unprojection
template <class S, class RotationType>
S Shot<S,RotationType>::Depth(const vcg::Point3<S> & p)const
{
return ConvertWorldToCameraCoordinates(p).Z();
}
//--------------------------------
//--- utility definitions
typedef Shot<float> Shotf;
typedef Shot<double> Shotd;
//-----------------------
} // end name space
#endif