vcglib/vcg/simplex/edge/topology.h

224 lines
6.4 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef _VCG_EDGE_TOPOLOGY
#define _VCG_EDGE_TOPOLOGY
#include <vector>
#include <algorithm>
#include <vcg/simplex/edge/pos.h>
namespace vcg {
namespace edge {
/** \addtogroup edge */
/*@{*/template <class EdgeType>
inline bool IsEdgeManifoldFF( EdgeType const & e, const int j )
{
assert(e.cFFp(j) != 0); // never try to use this on uncomputed topology
if(EdgeType::HasFFAdjacency())
return ( e.cFFp(j) == &e || &e == e.cFFp(j)->cFFp(e.cFFi(j)) );
else
return true;
}
/** Return a boolean that indicate if the j-th edge of the face is a border.
@param j Index of the edge
@return true if j is an edge of border, false otherwise
*/
template <class EdgeType>
inline bool IsEdgeBorder(EdgeType const & e, const int j )
{
if(EdgeType::HasEEAdjacency())
return e.cEEp(j)==&e;
assert(0);
return true;
}
template <class EdgeType>
void VVStarVE(typename EdgeType::VertexType* vp, std::vector<typename EdgeType::VertexType *> &starVec)
{
starVec.clear();
edge::VEIterator<EdgeType> vei(vp);
while(!vei.End())
{
starVec.push_back(vei.V1());
++vei;
}
}
template <class EdgeType>
void VEStarVE(const typename EdgeType::VertexType* vp, std::vector<EdgeType *> &starVec)
{
starVec.clear();
edge::VEIterator<EdgeType> vei(vp);
while(!vei.End())
{
starVec.push_back(vei.E());
++vei;
}
}
/// Completely detach an edge from the VE adjacency. Useful before deleting it
template <class EdgeType>
void VEDetach(EdgeType & e)
{
VEDetach(e,0);
VEDetach(e,1);
}
/// It detaches the given edge e from the VE adjacency on the vertex z
/// It is used for careful hand stictching of topologies.
template <class EdgeType>
void VEDetach(EdgeType & e, int z)
{
typename EdgeType::VertexType *vz = e.V(z); // the vertex from which the edge must be detached.
if(vz->VEp()==&e ) //if it is the first edge in the VE chain it detaches it from the begin
{
int fz = vz->VEi();
vz->VEp() = e.VEp(fz);
vz->VEi() = e.VEi(fz);
}
else // scan the list of edges to find the current edge e to be detached
{
VEIterator<EdgeType> x(vz->VEp(),vz->VEi());
VEIterator<EdgeType> y;
for(;;)
{
y = x;
++x;
assert(x.e!=0);
if(x.e==&e) // found!
{
y.e->VEp(y.z) = e.VEp(z);
y.e->VEi(y.z) = e.VEi(z);
break;
}
}
}
}
/// Append an edge in the VE list of vertex e->V(z)
template <class EdgeType>
void VEAppend(EdgeType* & e, int z)
{
typename EdgeType::VertexType *v = e->V(z);
if (v->VEp()!=0)
{
EdgeType *e0=v->VEp();
int z0=v->VEi();
//append
e->VEp(z)=e0;
e->VEi(z)=z0;
}
v->VEp()=e;
v->VEi()=z;
}
/*! Perform a simple edge collapse using VE adjacency
*
* It collapses the two edges incidnent on the indicated vertex so that the passed edge survives,
* the indicated vertex is deleted, and the edge ajacent to e0 along z is deleted too.
* It assumes that the edge mesh is 1-Manifold.
* If the indicated vertex <vd> is boundary or non manifold the function do nothing.
*
* v0 vd v1
* ---O-------O-------O---
* z0 e0 z e1 z1
*
* v0 v1
* ---O---------------O---
* e0
*
*
*/
template <class MeshType>
void VEEdgeCollapse(MeshType &poly, typename MeshType::EdgeType *e0, const int z)
{
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::VertexType VertexType;
VertexType *vd = e0->V(z);
std::vector<EdgeType *> starVecEp;
edge::VEStarVE(vd,starVecEp);
if(starVecEp.size()!=2) return;
EdgeType *e1=0; // this edge will be deleted
if( starVecEp[0] == e0 ) e1 = starVecEp[1];
if( starVecEp[1] == e0 ) e1 = starVecEp[0];
assert(e1 && (e1!=e0) );
int z0 = (z+1)%2;
int z1 = -1;
if(e1->V(0) == vd) z1=1;
if(e1->V(1) == vd) z1=0;
assert(z1!=-1);
VertexType *v1 = e1->V(z1);
edge::VEDetach(*e1);
edge::VEDetach(*e0,z);
e0->V(z) = v1;
edge::VEAppend(e0, z);
tri::Allocator<MeshType>::DeleteEdge(poly,*e1);
tri::Allocator<MeshType>::DeleteVertex(poly,*vd);
}
template <class MeshType>
void VEEdgeCollapse(MeshType &poly, typename MeshType::VertexType *v)
{
VEEdgeCollapse(poly,v->VEp(),v->VEi());
}
/*! Returns the number of incident edges over a vertex vp; Using the VE adjacency.
*
* It just follows the chain of incident edges of the VE adjacency.
*/
template <class EdgeType>
int VEDegree(const typename EdgeType::VertexType* vp)
{
int cnt=0;
edge::VEIterator<EdgeType> vei(vp);
while(!vei.End())
{
++cnt;
++vei;
}
return cnt;
}
} // end namespace edge
} // end namespace vcg
#endif