vcglib/vcg/simplex/vertex/component_ocf.h

644 lines
24 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/*
OCF = Optional Component Fast (hopefully)
compare with OCC(Optional Component Compact)
*/
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
#ifndef __VCG_VERTEX_PLUS_COMPONENT_OCF
#define __VCG_VERTEX_PLUS_COMPONENT_OCF
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
namespace vcg {
namespace vertex {
/*
All the Components that can be added to a vertex should be defined in the namespace vert:
*/
template <class VALUE_TYPE>
class vector_ocf: public std::vector<VALUE_TYPE> {
typedef std::vector<VALUE_TYPE> BaseType;
typedef typename vector_ocf<VALUE_TYPE>::iterator ThisTypeIterator;
public:
vector_ocf():std::vector<VALUE_TYPE>()
{
ColorEnabled = false;
CurvatureEnabled = false;
CurvatureDirEnabled = false;
MarkEnabled = false;
NormalEnabled = false;
QualityEnabled = false;
RadiusEnabled = false;
TexCoordEnabled = false;
VFAdjacencyEnabled = false;
}
////////////////////////////////////////
// All the standard methods of std::vector that can change the reallocation are
// redefined in order to manage the additional data.
void push_back(const VALUE_TYPE & v)
{
BaseType::push_back(v);
BaseType::back()._ovp = this;
if (ColorEnabled) CV.push_back(vcg::Color4b(vcg::Color4b::White));
if (QualityEnabled) QV.push_back(0);
if (MarkEnabled) MV.push_back(0);
if (NormalEnabled) NV.push_back(typename VALUE_TYPE::NormalType());
if (TexCoordEnabled) TV.push_back(typename VALUE_TYPE::TexCoordType());
if (VFAdjacencyEnabled) AV.push_back(VFAdjType());
if (CurvatureEnabled) CuV.push_back(typename VALUE_TYPE::CurvatureType());
if (CurvatureDirEnabled) CuDV.push_back(typename VALUE_TYPE::CurvatureDirType());
if (RadiusEnabled) RadiusV.push_back(typename VALUE_TYPE::RadiusType());
}
void pop_back();
void resize(size_t _size)
{
const size_t oldsize = BaseType::size();
BaseType::resize(_size);
if(oldsize<_size){
ThisTypeIterator firstnew = BaseType::begin();
advance(firstnew,oldsize);
_updateOVP(firstnew,(*this).end());
}
if (ColorEnabled) CV.resize(_size);
if (QualityEnabled) QV.resize(_size,0);
if (MarkEnabled) MV.resize(_size);
if (NormalEnabled) NV.resize(_size);
if (TexCoordEnabled) TV.resize(_size);
if (VFAdjacencyEnabled) AV.resize(_size,VFAdjType::Zero());
if (CurvatureEnabled) CuV.resize(_size);
if (CurvatureDirEnabled) CuDV.resize(_size);
if (RadiusEnabled) RadiusV.resize(_size);
}
void reserve(size_t _size)
{
BaseType::reserve(_size);
if (ColorEnabled) CV.reserve(_size);
if (QualityEnabled) QV.reserve(_size);
if (MarkEnabled) MV.reserve(_size);
if (NormalEnabled) NV.reserve(_size);
if (TexCoordEnabled) TV.reserve(_size);
if (VFAdjacencyEnabled) AV.reserve(_size);
if (CurvatureEnabled) CuV.reserve(_size);
if (CurvatureDirEnabled) CuDV.reserve(_size);
if (RadiusEnabled) RadiusV.reserve(_size);
}
void _updateOVP(ThisTypeIterator lbegin, ThisTypeIterator lend)
{
ThisTypeIterator vi;
for(vi=lbegin;vi!=lend;++vi)
(*vi)._ovp=this;
}
////////////////////////////////////////
// Enabling Eunctions
bool IsQualityEnabled() const {return QualityEnabled;}
void EnableQuality() {
assert(VALUE_TYPE::HasQualityOcf());
QualityEnabled=true;
QV.resize((*this).size(),0);
}
void DisableQuality() {
assert(VALUE_TYPE::HasQualityOcf());
QualityEnabled=false;
QV.clear();
}
bool IsColorEnabled() const {return ColorEnabled;}
void EnableColor() {
assert(VALUE_TYPE::HasColorOcf());
ColorEnabled=true;
CV.resize((*this).size());
}
void DisableColor() {
assert(VALUE_TYPE::HasColorOcf());
ColorEnabled=false;
CV.clear();
}
bool IsMarkEnabled() const {return MarkEnabled;}
void EnableMark() {
assert(VALUE_TYPE::HasMarkOcf());
MarkEnabled=true;
MV.resize((*this).size(),0);
}
void DisableMark() {
assert(VALUE_TYPE::HasMarkOcf());
MarkEnabled=false;
MV.clear();
}
bool IsNormalEnabled() const {return NormalEnabled;}
void EnableNormal() {
assert(VALUE_TYPE::HasNormalOcf());
NormalEnabled=true;
NV.resize((*this).size());
}
void DisableNormal() {
assert(VALUE_TYPE::HasNormalOcf());
NormalEnabled=false;
NV.clear();
}
bool IsVFAdjacencyEnabled() const {return VFAdjacencyEnabled;}
void EnableVFAdjacency() {
assert(VALUE_TYPE::HasVFAdjacencyOcf());
VFAdjacencyEnabled=true;
AV.resize((*this).size(),VFAdjType::Zero());
}
void DisableVFAdjacency() {
assert(VALUE_TYPE::HasVFAdjacencyOcf());
VFAdjacencyEnabled=false;
AV.clear();
}
bool IsCurvatureEnabled() const {return CurvatureEnabled;}
void EnableCurvature() {
assert(VALUE_TYPE::HasCurvatureOcf());
CurvatureEnabled=true;
CuV.resize((*this).size());
}
void DisableCurvature() {
assert(VALUE_TYPE::HasCurvatureOcf());
CurvatureEnabled=false;
CuV.clear();
}
bool IsCurvatureDirEnabled() const {return CurvatureDirEnabled;}
void EnableCurvatureDir() {
assert(VALUE_TYPE::HasCurvatureDirOcf());
CurvatureDirEnabled=true;
CuDV.resize((*this).size());
}
void DisableCurvatureDir() {
assert(VALUE_TYPE::HasCurvatureDirOcf());
CurvatureDirEnabled=false;
CuDV.clear();
}
bool IsRadiusEnabled() const {return RadiusEnabled;}
void EnableRadius() {
assert(VALUE_TYPE::HasRadiusOcf());
RadiusEnabled=true;
RadiusV.resize((*this).size());
}
void DisableRadius() {
assert(VALUE_TYPE::HasRadiusOcf());
RadiusEnabled=false;
RadiusV.clear();
}
bool IsTexCoordEnabled() const {return TexCoordEnabled;}
void EnableTexCoord() {
assert(VALUE_TYPE::HasTexCoordOcf());
TexCoordEnabled=true;
TV.resize((*this).size());
}
void DisableTexCoord() {
assert(VALUE_TYPE::HasTexCoordOcf());
TexCoordEnabled=false;
TV.clear();
}
struct VFAdjType {
VFAdjType():_fp(0),_zp(-1) {}
VFAdjType(typename VALUE_TYPE::FacePointer fp, int zp):_fp(fp),_zp(zp){}
typename VALUE_TYPE::FacePointer _fp ;
int _zp ;
static VFAdjType Zero() { return VFAdjType(0,-1); }
bool IsNull() const { return (_zp ==-1); }
};
public:
std::vector<typename VALUE_TYPE::ColorType> CV;
std::vector<typename VALUE_TYPE::CurvatureType> CuV;
std::vector<typename VALUE_TYPE::CurvatureDirType> CuDV;
std::vector<int> MV;
std::vector<typename VALUE_TYPE::NormalType> NV;
std::vector<typename VALUE_TYPE::QualityType> QV;
std::vector<typename VALUE_TYPE::RadiusType> RadiusV;
std::vector<typename VALUE_TYPE::TexCoordType> TV;
std::vector<struct VFAdjType> AV;
bool ColorEnabled;
bool CurvatureEnabled;
bool CurvatureDirEnabled;
bool MarkEnabled;
bool NormalEnabled;
bool QualityEnabled;
bool RadiusEnabled;
bool TexCoordEnabled;
bool VFAdjacencyEnabled;
};
//template<> void EnableAttribute<typename VALUE_TYPE::NormalType>(){ NormalEnabled=true;}
/*------------------------- COORD -----------------------------------------*/
/*----------------------------- VFADJ ------------------------------*/
template <class T> class VFAdjOcf: public T {
public:
typename T::FacePointer &VFp() {
assert((*this).Base().VFAdjacencyEnabled);
return (*this).Base().AV[(*this).Index()]._fp;
}
typename T::FacePointer cVFp() const {
if(! (*this).Base().VFAdjacencyEnabled ) return 0;
else return (*this).Base().AV[(*this).Index()]._fp;
}
int &VFi() {
assert((*this).Base().VFAdjacencyEnabled);
return (*this).Base().AV[(*this).Index()]._zp;
}
int cVFi() const {
if(! (*this).Base().VFAdjacencyEnabled ) return -1;
return (*this).Base().AV[(*this).Index()]._zp;
}
template <class RightVertexType>
void ImportData(const RightVertexType & rightV)
{
T::ImportData(rightV);
}
static bool HasVFAdjacency() { return true; }
static bool HasVFAdjacencyOcf() { return true; }
bool IsVFAdjacencyEnabled(const typename T::VertexType *vp) {return vp->Base().VFAdjacencyEnabled;}
static void Name(std::vector<std::string> & name){name.push_back(std::string("VFAdjOcf"));T::Name(name);}
private:
};
/*------------------------- Normal -----------------------------------------*/
template <class A, class T> class NormalOcf: public T {
public:
typedef A NormalType;
inline bool IsNormalEnabled( ) const { return this->Base().IsNormalEnabled(); }
static bool HasNormal() { return true; }
static bool HasNormalOcf() { return true; }
const NormalType &N() const { assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; }
NormalType &N() { assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; }
NormalType cN() const { assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; }
template <class RightVertexType>
void ImportData(const RightVertexType & rightV){
if((*this).IsNormalEnabled() && rightV.IsNormalEnabled() )
N().Import(rightV.cN());
T::ImportData(rightV);}
};
template <class T> class Normal3sOcf: public NormalOcf<vcg::Point3s, T> {public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3sOcf"));T::Name(name);}};
template <class T> class Normal3fOcf: public NormalOcf<vcg::Point3f, T> {public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3fOcf"));T::Name(name);}};
template <class T> class Normal3dOcf: public NormalOcf<vcg::Point3d, T> {public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Normal3dOcf"));T::Name(name);}};
///*-------------------------- COLOR ----------------------------------*/
template <class A, class T> class ColorOcf: public T {
public:
typedef A ColorType;
const ColorType &C() const { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; }
ColorType &C() { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; }
ColorType cC() const { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; }
template <class RightVertexType>
void ImportData(const RightVertexType & rightV)
{
if((*this).IsColorEnabled() && rightV.IsColorEnabled() )
C() = rightV.cC();
T::ImportData(rightV);
}
inline bool IsColorEnabled() const { return this->Base().IsColorEnabled();}
static bool HasColor() { return true; }
static bool HasColorOcf() { assert(!T::HasColorOcf()); return true; }
};
template <class T> class Color4bOcf: public ColorOcf<vcg::Color4b, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4bOcf"));T::Name(name);}
};
///*-------------------------- QUALITY ----------------------------------*/
template <class A, class T> class QualityOcf: public T {
public:
typedef A QualityType;
const QualityType &Q() const { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; }
QualityType &Q() { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; }
QualityType cQ() const { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; }
template <class RightVertexType>
void ImportData(const RightVertexType & rightV)
{
if((*this).IsQualityEnabled() && rightV.IsQualityEnabled() ) // copy the data only if they are enabled in both vertices
Q() = rightV.cQ();
T::ImportData(rightV);
}
inline bool IsQualityEnabled( ) const { return this->Base().IsQualityEnabled(); }
static bool HasQuality() { return true; }
static bool HasQualityOcf() { assert(!T::HasQualityOcf()); return true; }
};
template <class T> class QualityfOcf: public QualityOcf<float, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("QualityfOcf"));T::Name(name);}
};
///*-------------------------- TEXTURE ----------------------------------*/
template <class A, class TT> class TexCoordOcf: public TT {
public:
typedef A TexCoordType;
const TexCoordType &T() const { assert((*this).Base().TexCoordEnabled); return (*this).Base().TV[(*this).Index()]; }
TexCoordType &T() { assert((*this).Base().TexCoordEnabled); return (*this).Base().TV[(*this).Index()]; }
TexCoordType cT() const { assert((*this).Base().TexCoordEnabled); return (*this).Base().TV[(*this).Index()]; }
template < class RightVertexType>
void ImportData(const RightVertexType & rightV)
{
if((*this).IsTexCoordEnabled() && rightV.IsTexCoordEnabled()) // copy the data only if they are enabled in both vertices
T() = rightV.cT();
TT::ImportData(rightV);
}
inline bool IsTexCoordEnabled( ) const { return this->Base().IsTexCoordEnabled(); }
static bool HasTexCoord() { return true; }
static bool HasTexCoordOcf() { assert(!TT::HasTexCoordOcf()); return true; }
};
template <class T> class TexCoordfOcf: public TexCoordOcf<TexCoord2<float,1>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("TexCoordfOcf"));T::Name(name);}
};
///*-------------------------- MARK ----------------------------------*/
template <class T> class MarkOcf: public T {
public:
typedef int MarkType;
inline const int &IMark() const { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; }
inline int &IMark() { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; }
inline int cIMark() const { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; }
template <class RightVertexType>
void ImportData(const RightVertexType & rightV)
{
if((*this).IsMarkEnabled() && rightV.IsMarkEnabled()) // copy the data only if they are enabled in both vertices
IMark() = rightV.cIMark();
T::ImportData(rightV);
}
inline bool IsMarkEnabled( ) const { return this->Base().IsMarkEnabled(); }
static bool HasMark() { return true; }
static bool HasMarkOcf() { return true; }
inline void InitIMark() { IMark() = 0; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("IMark"));T::Name(name);}
};
///*-------------------------- CURVATURE ----------------------------------*/
template <class A, class TT> class CurvatureOcf: public TT {
public:
typedef Point2<A> CurvatureType;
typedef typename CurvatureType::ScalarType ScalarTypeCur;
ScalarTypeCur &Kh(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0]; }
ScalarTypeCur &Kg(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1]; }
ScalarTypeCur cKh() const
{
assert((*this).Base().CurvatureEnabled);
return (*this).Base().CuV[(*this).Index()][0];
}
ScalarTypeCur cKg() const
{
assert((*this).Base().CurvatureEnabled);
return (*this).Base().CuV[(*this).Index()][1];
}
template <class RightVertexType>
void ImportData(const RightVertexType & rightV){
if((*this).IsCurvatureEnabled() && rightV.IsCurvatureEnabled())
{
(*this).Base().CuV[(*this).Index()][0] = rightV.cKh();
(*this).Base().CuV[(*this).Index()][1] = rightV.cKg();
}
TT::ImportData(rightV);
}
inline bool IsCurvatureEnabled( ) const
{
return this->Base().IsCurvatureEnabled();
}
static bool HasCurvature() { return true; }
static bool HasCurvatureOcf() { return true; }
};
template <class T> class CurvaturefOcf: public CurvatureOcf<float, T> {public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvaturefOcf"));T::Name(name);} };
template <class T> class CurvaturedOcf: public CurvatureOcf<double, T> {public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvaturedOcf"));T::Name(name);} };
///*-------------------------- CURVATURE DIR ----------------------------------*/
template <class S>
struct CurvatureDirTypeOcf{
typedef Point3<S> CurVecType;
typedef S CurScalarType;
CurvatureDirTypeOcf () {}
CurVecType max_dir,min_dir;
CurScalarType k1,k2;
};
template <class A, class TT> class CurvatureDirOcf: public TT {
public:
typedef A CurvatureDirType;
typedef typename CurvatureDirType::CurVecType CurVecType;
typedef typename CurvatureDirType::CurScalarType CurScalarType;
CurVecType &PD1() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].max_dir;}
CurVecType &PD2() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].min_dir;}
CurVecType cPD1() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].max_dir;}
CurVecType cPD2() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].min_dir;}
CurScalarType &K1() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;}
CurScalarType &K2() { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;}
CurScalarType cK1() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;}
CurScalarType cK2() const { assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;}
template <class RightVertexType>
void ImportData(const RightVertexType & rightV){
if((*this).IsCurvatureDirEnabled() && rightV.IsCurvatureDirEnabled())
{
(*this).PD1().Import(rightV.cPD1());
(*this).PD2().Import(rightV.cPD2());
(*this).K1()=rightV.cK1();
(*this).K2()=rightV.cK2();
}
TT::ImportData(rightV);
}
inline bool IsCurvatureDirEnabled( ) const { return this->Base().IsCurvatureDirEnabled(); }
static bool HasCurvatureDir() { return true; }
static bool HasCurvatureDirOcf() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirOcf"));TT::Name(name);}
};
template <class T> class CurvatureDirfOcf: public CurvatureDirOcf<CurvatureDirTypeOcf<float>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirfOcf"));T::Name(name);}
};
template <class T> class CurvatureDirdOcf: public CurvatureDirOcf<CurvatureDirTypeOcf<double>, T> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("CurvatureDirdOcf"));T::Name(name);}
};
///*-------------------------- RADIUS ----------------------------------*/
template <class A, class TT> class RadiusOcf: public TT {
public:
typedef A RadiusType;
const RadiusType &R() const { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];}
RadiusType &R() { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];}
RadiusType cR() const { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];}
template <class RightVertexType>
void ImportData(const RightVertexType & rightV)
{
if ((*this).IsRadiusEnabled() && rightV.IsRadiusEnabled())
(*this).Base().RadiusV[(*this).Index()] = rightV.cR();
TT::ImportData(rightV);
}
inline bool IsRadiusEnabled( ) const { return this->Base().IsRadiusEnabled(); }
static bool HasRadius() { return true; }
static bool HasRadiusOcf() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("RadiusOcf")); TT::Name(name);}
};
template <class T> class RadiusfOcf: public RadiusOcf<float, T> {};
template <class T> class RadiusdOcf: public RadiusOcf<double, T> {};
///*-------------------------- InfoOpt ----------------------------------*/
template < class T> class InfoOcf: public T {
public:
// You should never ever try to copy a vertex that has OCF stuff.
// use ImportData function.
inline InfoOcf &operator=(const InfoOcf & /*other*/) {
assert(0); return *this;
}
vector_ocf<typename T::VertexType> &Base() const { return *_ovp;}
inline int Index() const {
typename T::VertexType const *tp=static_cast<typename T::VertexType const*>(this);
int tt2=tp- &*(_ovp->begin());
return tt2;
}
public:
vector_ocf<typename T::VertexType> *_ovp;
static bool HasColorOcf() { return false; }
static bool HasCurvatureOcf() { return false; }
static bool HasCurvatureDirOcf() { return false; }
static bool HasNormalOcf() { return false; }
static bool HasMarkOcf() { return false; }
static bool HasQualityOcf() { return false; }
static bool HasRadiusOcf() { return false; }
static bool HasTexCoordOcf() { return false; }
static bool HasVFAdjacencyOcf() { return false; }
};
} // end namespace vert
namespace tri
{
template < class VertexType >
bool VertexVectorHasVFAdjacency(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasVFAdjacencyOcf()) return fv.IsVFAdjacencyEnabled();
else return VertexType::HasVFAdjacency();
}
template < class VertexType >
bool VertexVectorHasPerVertexRadius(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasRadiusOcf()) return fv.IsRadiusEnabled();
else return VertexType::HasRadius();
}
template < class VertexType >
bool VertexVectorHasPerVertexQuality(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasQualityOcf()) return fv.IsQualityEnabled();
else return VertexType::HasQuality();
}
template < class VertexType >
bool VertexVectorHasPerVertexNormal(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasNormalOcf()) return fv.IsNormalEnabled();
else return VertexType::HasNormal();
}
template < class VertexType >
bool VertexVectorHasPerVertexColor(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasColorOcf()) return fv.IsColorEnabled();
else return VertexType::HasColor();
}
template < class VertexType >
bool VertexVectorHasPerVertexCurvature(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasCurvatureOcf()) return fv.IsCurvatureEnabled();
else return VertexType::HasCurvature();
}
template < class VertexType >
bool VertexVectorHasPerVertexCurvatureDir(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasCurvatureDirOcf()) return fv.IsCurvatureDirEnabled();
else return VertexType::HasCurvatureDir();
}
template < class VertexType >
bool VertexVectorHasPerVertexTexCoord(const vertex::vector_ocf<VertexType> &fv)
{
if(VertexType::HasTexCoordOcf()) return fv.IsTexCoordEnabled();
else return VertexType::HasTexCoord();
}
}
}// end namespace vcg
#endif