535 lines
20 KiB
C++
535 lines
20 KiB
C++
/****************************************************************************
|
||
* VCGLib o o *
|
||
* Visual and Computer Graphics Library o o *
|
||
* _ O _ *
|
||
* Copyright(C) 2004 \/)\/ *
|
||
* Visual Computing Lab /\/| *
|
||
* ISTI - Italian National Research Council | *
|
||
* \ *
|
||
* All rights reserved. *
|
||
* *
|
||
* This program is free software; you can redistribute it and/or modify *
|
||
* it under the terms of the GNU General Public License as published by *
|
||
* the Free Software Foundation; either version 2 of the License, or *
|
||
* (at your option) any later version. *
|
||
* *
|
||
* This program is distributed in the hope that it will be useful, *
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
* for more details. *
|
||
* *
|
||
****************************************************************************/
|
||
/****************************************************************************
|
||
History
|
||
|
||
$Log: not supported by cvs2svn $
|
||
Revision 1.10 2006/01/22 10:06:23 cignoni
|
||
Corrected use of Area with the unambiguous DoubleArea
|
||
|
||
Revision 1.9 2005/09/28 19:35:06 m_di_benedetto
|
||
Added class PointDistanceFunctor.
|
||
|
||
Revision 1.8 2005/09/14 12:58:44 pietroni
|
||
changed min calls to Min<ScalarType> of math.h of vcglib
|
||
|
||
Revision 1.7 2005/09/14 09:58:32 pietroni
|
||
removed vcg::math::Min<ScalarType> definition generate warnings
|
||
|
||
Revision 1.6 2005/09/14 09:03:54 pietroni
|
||
added definition of vcg::math::Min<ScalarType> function
|
||
|
||
Revision 1.5 2005/02/02 16:44:34 pietroni
|
||
1 warning corrected added casting in const ScalarType EPSILON = ScalarType( 0.000001);
|
||
|
||
Revision 1.4 2005/01/28 12:00:33 cignoni
|
||
small gcc compiling issues for namespaces
|
||
|
||
Revision 1.3 2005/01/24 15:35:25 cignoni
|
||
Removed a 'using namespace'
|
||
|
||
Revision 1.2 2005/01/21 17:11:03 pietroni
|
||
changed Dist Function to PointDistance... the function is on vcg::face::PointDistance this file will contain all distance functions between a face and othe entities
|
||
|
||
Revision 1.1 2004/05/12 18:50:25 ganovelli
|
||
created
|
||
|
||
|
||
****************************************************************************/
|
||
|
||
#ifndef __VCGLIB_FACE_DISTANCE
|
||
#define __VCGLIB_FACE_DISTANCE
|
||
|
||
#include <vcg/math/base.h>
|
||
#include <vcg/space/point3.h>
|
||
#include <vcg/space/segment3.h>
|
||
#include <vcg/space/distance3.h>
|
||
|
||
namespace vcg {
|
||
namespace face{
|
||
/*
|
||
Point face distance
|
||
trova il punto <p> sulla faccia piu' vicino a <q>, con possibilit<69> di
|
||
rejection veloce su se la distanza trovata <20> maggiore di <rejdist>
|
||
|
||
Commenti del 12/11/02
|
||
Funziona solo se la faccia e di quelle di tipo E (con edge e piano per faccia gia' calcolati)
|
||
algoritmo:
|
||
1) si calcola la proiezione <p> di q sul piano della faccia
|
||
2) se la distanza punto piano e' > rejdist ritorna
|
||
3) si lavora sul piano migliore e si cerca di capire se il punto sta dentro il triangolo:
|
||
a) prodotto vettore tra edge triangolo (v[i+1]-v[i]) e (p-v[i])
|
||
b) se il risultato e' negativo (gira in senso orario) allora il punto
|
||
sta fuori da quella parte e si fa la distanza punto segmento.
|
||
c) se il risultato sempre positivo allora sta dentro il triangolo
|
||
4) e si restituisce la distanza punto /piano gia` calcolata
|
||
|
||
Note sulla robustezza:
|
||
il calcolo del prodotto vettore e` la cosa piu` delicata:
|
||
possibili fallimenti quando a^b ~= 0
|
||
1) doveva essere <= 0 e viene positivo (q era fuori o sulla linea dell'edge)
|
||
allora capita che si faccia la distanza punto piano anziche` la distanza punto seg
|
||
2) doveva essere > 0 e viene <=0 (q era dentro il triangolo)
|
||
|
||
*/
|
||
template <class FaceType>
|
||
bool PointDistance( const FaceType &f,
|
||
const vcg::Point3<typename FaceType::ScalarType> & q,
|
||
typename FaceType::ScalarType & dist,
|
||
vcg::Point3<typename FaceType::ScalarType> & p )
|
||
{
|
||
typedef typename FaceType::ScalarType ScalarType;
|
||
|
||
const ScalarType EPS = ScalarType( 0.000001);
|
||
|
||
//const ScalarType EPSILON = 0.00000001;
|
||
ScalarType b,b0,b1,b2;
|
||
// Calcolo distanza punto piano
|
||
ScalarType d = Distance( f.cPlane(), q );
|
||
if( d>dist || d<-dist ) // Risultato peggiore: niente di fatto
|
||
return false;
|
||
|
||
// Calcolo del punto sul piano
|
||
// NOTA: aggiunto un '-d' in fondo Paolo C.
|
||
Point3<ScalarType> t = f.cPlane().Direction();
|
||
t[0] *= -d;
|
||
t[1] *= -d;
|
||
t[2] *= -d;
|
||
p = q; p += t;
|
||
|
||
switch( f.Flags() & (FaceType::NORMX|FaceType::NORMY|FaceType::NORMZ) )
|
||
{
|
||
case FaceType::NORMX:
|
||
b0 = f.cEdge(1)[1]*(p[2] - f.cP(1)[2]) - f.cEdge(1)[2]*(p[1] - f.cP(1)[1]);
|
||
if(b0<=0)
|
||
{
|
||
b0 = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
if(dist>b0) { dist = b0; return true; }
|
||
else return false;
|
||
}
|
||
b1 = f.cEdge(2)[1]*(p[2] - f.cP(2)[2]) - f.cEdge(2)[2]*(p[1] - f.cP(2)[1]);
|
||
if(b1<=0)
|
||
{
|
||
b1 = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
if(dist>b1) { dist = b1; return true; }
|
||
else return false;
|
||
}
|
||
b2 = f.cEdge(0)[1]*(p[2] - f.cP(0)[2]) - f.cEdge(0)[2]*(p[1] - f.cP(0)[1]);
|
||
if(b2<=0)
|
||
{
|
||
b2 = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
if(dist>b2) { dist = b2; return true; }
|
||
else return false;
|
||
}
|
||
// sono tutti e tre > 0 quindi dovrebbe essere dentro;
|
||
// per sicurezza se il piu' piccolo dei tre e' < epsilon (scalato rispetto all'area della faccia
|
||
// per renderlo dimension independent.) allora si usa ancora la distanza punto
|
||
// segmento che e' piu robusta della punto piano, e si fa dalla parte a cui siamo piu'
|
||
// vicini (come prodotto vettore)
|
||
// Nota: si potrebbe rendere un pochino piu' veloce sostituendo Area()
|
||
// con il prodotto vettore dei due edge in 2d lungo il piano migliore.
|
||
if( (b=std::min(b0,std::min(b1,b2)) ) < EPS*DoubleArea(f))
|
||
{
|
||
ScalarType bt;
|
||
if(b==b0) bt = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
else if(b==b1) bt = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
else { assert(b==b2);
|
||
bt = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
}
|
||
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPS*Area(),bt);
|
||
if(dist>bt) { dist = bt; return true; }
|
||
else return false;
|
||
}
|
||
break;
|
||
|
||
case FaceType::NORMY:
|
||
b0 = f.cEdge(1)[2]*(p[0] - f.cP(1)[0]) - f.cEdge(1)[0]*(p[2] - f.cP(1)[2]);
|
||
if(b0<=0)
|
||
{
|
||
b0 = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
if(dist>b0) { dist = b0; return true; }
|
||
else return false;
|
||
}
|
||
b1 = f.cEdge(2)[2]*(p[0] - f.cP(2)[0]) - f.cEdge(2)[0]*(p[2] - f.cP(2)[2]);
|
||
if(b1<=0)
|
||
{
|
||
b1 = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
if(dist>b1) { dist = b1; return true; }
|
||
else return false;
|
||
}
|
||
b2 = f.cEdge(0)[2]*(p[0] - f.cP(0)[0]) - f.cEdge(0)[0]*(p[2] - f.cP(0)[2]);
|
||
if(b2<=0)
|
||
{
|
||
b2 = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
if(dist>b2) { dist = b2; return true; }
|
||
else return false;
|
||
}
|
||
if( (b=math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
|
||
{
|
||
ScalarType bt;
|
||
if(b==b0) bt = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
else if(b==b1) bt = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
else { assert(b==b2);
|
||
bt = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
}
|
||
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
|
||
if(dist>bt) { dist = bt; return true; }
|
||
else return false;
|
||
}
|
||
break;
|
||
|
||
case FaceType::NORMZ:
|
||
b0 = f.cEdge(1)[0]*(p[1] - f.cP(1)[1]) - f.cEdge(1)[1]*(p[0] - f.cP(1)[0]);
|
||
if(b0<=0)
|
||
{
|
||
b0 = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
if(dist>b0) { dist = b0; return true; }
|
||
else return false;
|
||
}
|
||
b1 = f.cEdge(2)[0]*(p[1] - f.cP(2)[1]) - f.cEdge(2)[1]*(p[0] - f.cP(2)[0]);
|
||
if(b1<=0)
|
||
{
|
||
b1 = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
if(dist>b1) { dist = b1; return true; }
|
||
else return false;
|
||
}
|
||
b2 = f.cEdge(0)[0]*(p[1] - f.cP(0)[1]) - f.cEdge(0)[1]*(p[0] - f.cP(0)[0]);
|
||
if(b2<=0)
|
||
{
|
||
b2 = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
if(dist>b2) { dist = b2; return true; }
|
||
else return false;
|
||
}
|
||
if( (b=math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
|
||
{
|
||
ScalarType bt;
|
||
if(b==b0) bt = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
else if(b==b1) bt = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
else { assert(b==b2);
|
||
bt = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
}
|
||
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
|
||
|
||
if(dist>bt) { dist = bt; return true; }
|
||
else return false;
|
||
}
|
||
break;
|
||
|
||
}
|
||
|
||
dist = ScalarType(fabs(d));
|
||
//dist = Distance(p,q);
|
||
return true;
|
||
}
|
||
|
||
template <class S>
|
||
class PointDistanceFunctor {
|
||
public:
|
||
typedef S ScalarType;
|
||
typedef Point3<ScalarType> QueryType;
|
||
static inline const Point3<ScalarType> & Pos(const QueryType & qt) {return qt;}
|
||
|
||
template <class FACETYPE, class SCALARTYPE>
|
||
inline bool operator () (const FACETYPE & f, const Point3<SCALARTYPE> & p, SCALARTYPE & minDist, Point3<SCALARTYPE> & q) {
|
||
const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p);
|
||
Point3<typename FACETYPE::ScalarType> fq;
|
||
typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
|
||
const bool ret = PointDistance(f, fp, md, fq);
|
||
minDist = (SCALARTYPE)(md);
|
||
q = Point3<SCALARTYPE>::Construct(fq);
|
||
return (ret);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
template <class S>
|
||
class PointNormalDistanceFunctor {
|
||
public:
|
||
typedef typename S::ScalarType ScalarType;
|
||
typedef S QueryType;
|
||
static inline const Point3<ScalarType> & Pos(const QueryType & qt) {return qt.P();}
|
||
|
||
|
||
static ScalarType & Alpha(){static ScalarType alpha = 1.0; return alpha;}
|
||
static ScalarType & Beta (){static ScalarType beta = 1.0; return beta;}
|
||
static ScalarType & Gamma(){static ScalarType gamma = 1.0; return gamma;}
|
||
static ScalarType & InterPoint(){static ScalarType interpoint= 1.0; return interpoint;}
|
||
|
||
|
||
template <class FACETYPE, class SCALARTYPE>
|
||
inline bool operator () (const FACETYPE &f, const typename FACETYPE::VertexType &p,
|
||
SCALARTYPE & minDist,Point3<SCALARTYPE> & q)
|
||
{
|
||
const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p.cP());
|
||
const Point3<typename FACETYPE::ScalarType> fn = Point3<typename FACETYPE::ScalarType>::Construct(p.cN());
|
||
Point3<typename FACETYPE::ScalarType> fq;
|
||
typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
|
||
const bool ret=PointDistance(f,fp,md,fq);
|
||
|
||
SCALARTYPE dev=InterPoint()*(pow((ScalarType)(1-f.cN().dot(fn)),(ScalarType)Beta())/(Gamma()*md+0.1));
|
||
|
||
if (md+dev < minDist){
|
||
minDist = (SCALARTYPE)(md+dev);
|
||
q = Point3<SCALARTYPE>::Construct(fq);
|
||
//q.N() = f.N();
|
||
return (ret);
|
||
}
|
||
return false;
|
||
}
|
||
};
|
||
|
||
/// BASIC VERSION of the Point-face distance that does not require the EdgePlane Additional data.
|
||
/// Given a face and a point, returns the closest point of the face to p.
|
||
/// it assumes that the face has Normalized Normal and on the flags stored the preferred orientation.
|
||
// UpdateNormals::PerFaceNormalized(m)
|
||
// UpdateFlags<>::FaceProjection(m);
|
||
|
||
template <class FaceType>
|
||
bool PointDistanceBase(
|
||
const FaceType &f, /// the face to be tested
|
||
const vcg::Point3<typename FaceType::ScalarType> & q, /// the point tested
|
||
typename FaceType::ScalarType & dist, /// bailout distance. It must be initialized with the max admittable value.
|
||
vcg::Point3<typename FaceType::ScalarType> & p )
|
||
{
|
||
typedef typename FaceType::ScalarType ScalarType;
|
||
// remember that the macro NDEBUG is defined when you want to optimize a lot.
|
||
#ifndef NDEBUG
|
||
static int staticCnt=0; // small piece of code that sometime check that face normals are really normalized
|
||
if((staticCnt++%100)==0)
|
||
assert((f.cN().SquaredNorm() ==0) || (f.cN().SquaredNorm() > 0.9999 && f.cN().SquaredNorm()<1.0001)); // if you get this assert you have forgot to make a UpdateNormals::PerFaceNormalized(m)
|
||
#endif
|
||
|
||
if(f.cN()==Point3<ScalarType>(0,0,0)) // to correctly manage the case of degenerate triangles we consider them as segments.
|
||
{
|
||
Box3<ScalarType> bb;
|
||
f.GetBBox(bb);
|
||
Segment3<ScalarType> degenTri(bb.min,bb.max);
|
||
//Point3<ScalarType> closest= ClosestPoint( degenTri, q );
|
||
//ScalarType d = Distance(closest, q);
|
||
Point3<ScalarType> closest;
|
||
ScalarType d;
|
||
vcg::SegmentPointDistance<ScalarType>(degenTri,q,closest,d);
|
||
if( d>dist || d<-dist ) // Risultato peggiore: niente di fatto
|
||
return false;
|
||
dist=d;
|
||
p=closest;
|
||
return true;
|
||
}
|
||
|
||
Plane3<ScalarType> fPlane;
|
||
fPlane.Init(f.cP(0),f.cN());
|
||
const ScalarType EPS = ScalarType( 0.000001);
|
||
ScalarType b,b0,b1,b2;
|
||
// Calcolo distanza punto piano
|
||
ScalarType d = Distance( fPlane, q );
|
||
if( d>dist || d<-dist ) // Risultato peggiore: niente di fatto
|
||
return false;
|
||
|
||
// Calcolo del punto sul piano
|
||
// NOTA: aggiunto un '-d' in fondo Paolo C.
|
||
Point3<ScalarType> t = fPlane.Direction();
|
||
t[0] *= -d;
|
||
t[1] *= -d;
|
||
t[2] *= -d;
|
||
p = q; p += t;
|
||
|
||
Point3<ScalarType> fEdge[3];
|
||
fEdge[0] = f.cP(1); fEdge[0] -= f.cP(0);
|
||
fEdge[1] = f.cP(2); fEdge[1] -= f.cP(1);
|
||
fEdge[2] = f.cP(0); fEdge[2] -= f.cP(2);
|
||
|
||
/*
|
||
This piece of code is part of the EdgePlane initialization structure: note that the edges are scaled!.
|
||
|
||
if(nx>ny && nx>nz) { f.Flags() |= FaceType::NORMX; d = 1/f.Plane().Direction()[0]; }
|
||
else if(ny>nz) { f.Flags() |= FaceType::NORMY; d = 1/f.Plane().Direction()[1]; }
|
||
else { f.Flags() |= FaceType::NORMZ; d = 1/f.Plane().Direction()[2]; }
|
||
f.Edge(0)*=d; f.Edge(1)*=d;f.Edge(2)*=d;
|
||
|
||
So we must apply the same scaling according to the plane orientation, eg in the case of NORMX
|
||
|
||
scaleFactor= 1/fPlane.Direction()[0];
|
||
fEdge[0]*=d; fEdge[1]*=d;fEdge[2]*=d;
|
||
*/
|
||
|
||
ScalarType scaleFactor;
|
||
|
||
switch( f.Flags() & (FaceType::NORMX|FaceType::NORMY|FaceType::NORMZ) )
|
||
{
|
||
case FaceType::NORMX:
|
||
scaleFactor= 1/fPlane.Direction()[0];
|
||
fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;
|
||
|
||
b0 = fEdge[1][1]*(p[2] - f.cP(1)[2]) - fEdge[1][2]*(p[1] - f.cP(1)[1]);
|
||
if(b0<=0)
|
||
{
|
||
b0 = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
if(dist>b0) { dist = b0; return true; }
|
||
else return false;
|
||
}
|
||
b1 = fEdge[2][1]*(p[2] - f.cP(2)[2]) - fEdge[2][2]*(p[1] - f.cP(2)[1]);
|
||
if(b1<=0)
|
||
{
|
||
b1 = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
if(dist>b1) { dist = b1; return true; }
|
||
else return false;
|
||
}
|
||
b2 = fEdge[0][1]*(p[2] - f.cP(0)[2]) - fEdge[0][2]*(p[1] - f.cP(0)[1]);
|
||
if(b2<=0)
|
||
{
|
||
b2 = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
if(dist>b2) { dist = b2; return true; }
|
||
else return false;
|
||
}
|
||
// sono tutti e tre > 0 quindi dovrebbe essere dentro;
|
||
// per sicurezza se il piu' piccolo dei tre e' < epsilon (scalato rispetto all'area della faccia
|
||
// per renderlo dimension independent.) allora si usa ancora la distanza punto
|
||
// segmento che e' piu robusta della punto piano, e si fa dalla parte a cui siamo piu'
|
||
// vicini (come prodotto vettore)
|
||
// Nota: si potrebbe rendere un pochino piu' veloce sostituendo Area()
|
||
// con il prodotto vettore dei due edge in 2d lungo il piano migliore.
|
||
if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
|
||
{
|
||
ScalarType bt;
|
||
if(b==b0) bt = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
else if(b==b1) bt = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
else if(b==b2) bt = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
|
||
if(dist>bt) { dist = bt; return true; }
|
||
else return false;
|
||
}
|
||
break;
|
||
|
||
case FaceType::NORMY:
|
||
scaleFactor= 1/fPlane.Direction()[1];
|
||
fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;
|
||
|
||
b0 = fEdge[1][2]*(p[0] - f.cP(1)[0]) - fEdge[1][0]*(p[2] - f.cP(1)[2]);
|
||
if(b0<=0)
|
||
{
|
||
b0 = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
if(dist>b0) { dist = b0; return true; }
|
||
else return false;
|
||
}
|
||
b1 = fEdge[2][2]*(p[0] - f.cP(2)[0]) - fEdge[2][0]*(p[2] - f.cP(2)[2]);
|
||
if(b1<=0)
|
||
{
|
||
b1 = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
if(dist>b1) { dist = b1; return true; }
|
||
else return false;
|
||
}
|
||
b2 = fEdge[0][2]*(p[0] - f.cP(0)[0]) - fEdge[0][0]*(p[2] - f.cP(0)[2]);
|
||
if(b2<=0)
|
||
{
|
||
b2 = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
if(dist>b2) { dist = b2; return true; }
|
||
else return false;
|
||
}
|
||
if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
|
||
{
|
||
ScalarType bt;
|
||
if(b==b0) bt = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
else if(b==b1) bt = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
else if(b==b2) bt = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
|
||
if(dist>bt) { dist = bt; return true; }
|
||
else return false;
|
||
}
|
||
break;
|
||
|
||
case FaceType::NORMZ:
|
||
scaleFactor= 1/fPlane.Direction()[2];
|
||
fEdge[0]*=scaleFactor; fEdge[1]*=scaleFactor; fEdge[2]*=scaleFactor;
|
||
|
||
b0 = fEdge[1][0]*(p[1] - f.cP(1)[1]) - fEdge[1][1]*(p[0] - f.cP(1)[0]);
|
||
if(b0<=0)
|
||
{
|
||
b0 = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
if(dist>b0) { dist = b0; return true; }
|
||
else return false;
|
||
}
|
||
b1 = fEdge[2][0]*(p[1] - f.cP(2)[1]) - fEdge[2][1]*(p[0] - f.cP(2)[0]);
|
||
if(b1<=0)
|
||
{
|
||
b1 = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
if(dist>b1) { dist = b1; return true; }
|
||
else return false;
|
||
}
|
||
b2 = fEdge[0][0]*(p[1] - f.cP(0)[1]) - fEdge[0][1]*(p[0] - f.cP(0)[0]);
|
||
if(b2<=0)
|
||
{
|
||
b2 = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
if(dist>b2) { dist = b2; return true; }
|
||
else return false;
|
||
}
|
||
if( (b=vcg::math::Min<ScalarType>(b0,b1,b2)) < EPS*DoubleArea(f))
|
||
{
|
||
ScalarType bt;
|
||
if(b==b0) bt = PSDist(q,f.V(1)->cP(),f.V(2)->cP(),p);
|
||
else if(b==b1) bt = PSDist(q,f.V(2)->cP(),f.V(0)->cP(),p);
|
||
else if(b==b2) bt = PSDist(q,f.V(0)->cP(),f.V(1)->cP(),p);
|
||
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
|
||
|
||
if(dist>bt) { dist = bt; return true; }
|
||
else return false;
|
||
}
|
||
break;
|
||
default: assert(0); // if you get this assert it means that you forgot to set the required UpdateFlags<MeshType>::FaceProjection(m);
|
||
|
||
}
|
||
|
||
dist = ScalarType(fabs(d));
|
||
//dist = Distance(p,q);
|
||
return true;
|
||
}
|
||
|
||
template <class S>
|
||
class PointDistanceBaseFunctor {
|
||
public:
|
||
typedef S ScalarType;
|
||
typedef Point3<ScalarType> QueryType;
|
||
|
||
static inline const Point3<ScalarType> & Pos(const Point3<ScalarType> & qt) {return qt;}
|
||
template <class FACETYPE, class SCALARTYPE>
|
||
inline bool operator () (const FACETYPE & f, const Point3<SCALARTYPE> & p, SCALARTYPE & minDist, Point3<SCALARTYPE> & q) {
|
||
const Point3<typename FACETYPE::ScalarType> fp = Point3<typename FACETYPE::ScalarType>::Construct(p);
|
||
Point3<typename FACETYPE::ScalarType> fq;
|
||
typename FACETYPE::ScalarType md = (typename FACETYPE::ScalarType)(minDist);
|
||
const bool ret = PointDistanceBase(f, fp, md, fq);
|
||
minDist = (SCALARTYPE)(md);
|
||
q = Point3<SCALARTYPE>::Construct(fq);
|
||
return (ret);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
} // end namespace face
|
||
|
||
} // end namespace vcg
|
||
|
||
|
||
#endif
|
||
|