vcglib/vcg/complex/trimesh/smooth.h

941 lines
28 KiB
C++
Raw Blame History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.15 2007/11/05 23:47:20 cignoni
added selection to the pasodoble smoothing
Revision 1.14 2007/03/27 09:40:47 cignoni
Changed use of selected to visited flags. Improved variable namings and comments
Revision 1.13 2006/11/07 15:13:56 zifnab1974
Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem
Revision 1.12 2006/11/07 11:28:02 cignoni
Added Quality weighted laplacian smoothing
Revision 1.11 2006/10/19 07:33:03 cignoni
Corrected Laplacian, Added selection to HCSmooth
Revision 1.10 2006/09/25 09:41:41 cignoni
Added new version of pasodoble smoothing
Revision 1.9 2006/02/06 10:45:47 cignoni
Added missing typenames
Revision 1.7 2006/01/24 13:23:22 pietroni
used template types instead of point3f and float inside function calls
Revision 1.6 2005/12/06 17:55:16 pietroni
1 bug corrected
Revision 1.5 2005/12/02 16:24:56 pietroni
corrected 1 bug in Cross Prod Gradient
Revision 1.4 2005/11/23 16:24:44 pietroni
corrected CrossProdGradient( )
Revision 1.3 2005/07/11 13:12:05 cignoni
small gcc-related compiling issues (typenames,ending cr, initialization order)
Revision 1.2 2005/03/16 16:14:12 spinelli
aggiunta funzione PasoDobleSmooth e relative:
- FitMesh
- FaceErrorGrad
- CrossProdGradient
- TriAreaGradient
- NormalSmooth
e le classi:
- PDVertInfo
- PDFaceInfo
necessarie per utilizzare SimpleTempData
Revision 1.1 2004/12/11 14:53:19 ganovelli
first partial porting: compiled gcc,intel and msvc
****************************************************************************/
#ifndef __VCGLIB__SMOOTH
#define __VCGLIB__SMOOTH
#include <vcg/space/point3.h>
#include <vcg/space/line3.h>
#include <vcg/container/simple_temporary_data.h>
#include <vcg/complex/trimesh/update/normal.h>
namespace vcg
{
template<class FLT>
class ScaleLaplacianInfo
{
public:
Point3<FLT> PntSum;
FLT LenSum;
};
// Scale dependent laplacian smoothing [fujimori 95]
// Nuova versione, l'idea e'quella di usare anche gli angoli delle facce per pesare lo spostamento.
//
// in pratica si sposta solo lungo la componente che e' parallela alla normale al vertice
// (che si suppone esserci!!)
// Non ha bisogno della topologia
// Non fa assunzioni sull'ordinamento delle facce, ma vuole che i border flag ci siano!
//
//
template<class MESH_TYPE>
void ScaleLaplacianSmooth(MESH_TYPE &m, int step, typename MESH_TYPE::ScalarType delta)
{
SimpleTempData<typename MESH_TYPE::VertContainer, ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.PntSum=typename MESH_TYPE::CoordType(0,0,0);
lpz.LenSum=0;
TD.Start(lpz);
typename MESH_TYPE::FaceIterator fi;
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::ScalarType a[3];
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
{
typename MESH_TYPE::CoordType mp=((*fi).V(0)->P() + (*fi).V(1)->P() + (*fi).V(2)->P())/3.0;
typename MESH_TYPE::CoordType e0=((*fi).V(0)->P() - (*fi).V(1)->P()).Normalize();
typename MESH_TYPE::CoordType e1=((*fi).V(1)->P() - (*fi).V(2)->P()).Normalize();
typename MESH_TYPE::CoordType e2=((*fi).V(2)->P() - (*fi).V(0)->P()).Normalize();
a[0]=AngleN(-e0,e2);
a[1]=AngleN(-e1,e0);
a[2]=AngleN(-e2,e1);
//assert(fabs(M_PI -a[0] -a[1] -a[2])<0.0000001);
for(int j=0;j<3;++j){
typename MESH_TYPE::CoordType dir= (mp-(*fi).V(j)->P()).Normalize();
TD[(*fi).V(j)].PntSum+=dir*a[j];
TD[(*fi).V(j)].LenSum+=a[j];
}
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].LenSum>0 )
(*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum ) * delta;
}
TD.Stop();
};
// Scale dependent laplacian smoothing [fujimori 95]
// Non ha bisogno della topologia
// Non fa assunzioni sull'ordinamento delle facce, ma vuole che i border flag ci siano!
//
//
template<class MESH_TYPE>
void ScaleLaplacianSmoothOld(MESH_TYPE &m, int step, typename MESH_TYPE::ScalarType delta)
{
SimpleTempData<typename MESH_TYPE::VertContainer, ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
ScaleLaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.PntSum=typename MESH_TYPE::CoordType(0,0,0);
lpz.LenSum=0;
TD.Start(lpz);
typename MESH_TYPE::FaceIterator fi;
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j)) {
typename MESH_TYPE::CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P();
typename MESH_TYPE::ScalarType len=Norm(edge);
edge/=len;
TD[(*fi).V(j)].PntSum+=edge;
TD[(*fi).V1(j)].PntSum-=edge;
TD[(*fi).V(j)].LenSum+=len;
TD[(*fi).V1(j)].LenSum+=len;
}
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<3;++j)
// se l'edge j e' di bordo si riazzera tutto e si riparte
if((*fi).IsB(j)) {
TD[(*fi).V(j)].PntSum=typename MESH_TYPE::CoordType(0,0,0);
TD[(*fi).V1(j)].PntSum=typename MESH_TYPE::CoordType(0,0,0);
TD[(*fi).V(j)].LenSum=0;
TD[(*fi).V1(j)].LenSum=0;
}
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
typename MESH_TYPE::CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P();
typename MESH_TYPE::ScalarType len=Norm(edge);
edge/=len;
TD[(*fi).V(j)].PntSum+=edge;
TD[(*fi).V1(j)].PntSum-=edge;
TD[(*fi).V(j)].LenSum+=len;
TD[(*fi).V1(j)].LenSum+=len;
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].LenSum>0 )
(*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum)*delta;
}
TD.Stop();
};
template<class FLT>
class LaplacianInfo
{
public:
Point3<FLT> sum;
FLT cnt;
};
// Classical Laplacian Smoothing. Each vertex can be moved onto the average of the adjacent vertices.
// Can smooth only the selected vertices and weight the smoothing according to the quality
// In the latter case 0 means that the vertex is not moved and 1 means that the vertex is moved onto the computed position.
template<class MESH_TYPE>
void LaplacianSmooth(MESH_TYPE &m, int step, bool SmoothSelected=false, float QualityWeight=0)
{
SimpleTempData<typename MESH_TYPE::VertContainer,LaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
LaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=1;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi].sum=(*vi).P();
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
//TD[(*fi).V(j)]=lpz;
//TD[(*fi).V1(j)]=lpz;
TD[(*fi).V0(j)].sum=(*fi).P0(j);
TD[(*fi).V1(j)].sum=(*fi).P1(j);
TD[(*fi).V0(j)].cnt=1;
TD[(*fi).V1(j)].cnt=1;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
if(QualityWeight>0)
{ // quality weighted smoothing
// We assume that weights are in the 0..1 range.
assert(tri::HasPerVertexQuality(m));
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
{
float q=1.0-(*vi).Q();
(*vi).P()=(*vi).P()*(1.0-q) + (TD[*vi].sum/TD[*vi].cnt)*q;
}
}
else
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
(*vi).P()=TD[*vi].sum/TD[*vi].cnt;
}
TD.Stop();
};
/*
Improved Laplacian Smoothing of Noisy Surface Meshes
J. Vollmer, R. Mencl, and H. M<>ller
EUROGRAPHICS Volume 18 (1999), Number 3
*/
template<class FLT>
class HCSmoothInfo
{
public:
Point3<FLT> dif;
Point3<FLT> sum;
int cnt;
};
template<class MESH_TYPE>
void HCSmooth(MESH_TYPE &m, int step, bool SmoothSelected=false )
{
typename MESH_TYPE::ScalarType beta=0.5;
SimpleTempData<typename MESH_TYPE::VertContainer,HCSmoothInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
HCSmoothInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.dif=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
// First Loop compute the laplacian
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
{
for(int j=0;j<3;++j)
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
// se l'edge j e' di bordo si deve sommare due volte
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
}
}
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD())
TD[*vi].sum/=(float)TD[*vi].cnt;
// Second Loop compute average difference
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int j=0;j<3;++j)
{
TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P();
TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P();
// se l'edge j e' di bordo si deve sommare due volte
if((*fi).IsB(j))
{
TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P();
TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P();
}
}
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
TD[*vi].dif/=(float)TD[*vi].cnt;
if(!SmoothSelected || (*vi).IsS())
(*vi).P()= TD[*vi].sum - (TD[*vi].sum - (*vi).P())*beta + (TD[*vi].dif)*(1.f-beta);
}
TD.Stop();
};
// Laplacian smooth of the quality.
template<class FLT>
class QualitySmoothInfo
{
public:
FLT sum;
int cnt;
};
template<class MESH_TYPE>
void LaplacianSmoothQuality(MESH_TYPE &m, int step,bool SmoothSelected=false)
{
SimpleTempData<typename MESH_TYPE::VertContainer,QualitySmoothInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
QualitySmoothInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=0;
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
//typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
(*vi).Q()=TD[*vi].sum/TD[*vi].cnt;
}
TD.Stop();
};
template<class MESH_TYPE>
void LaplacianSmoothNormals(MESH_TYPE &m, int step,bool SmoothSelected=false)
{
SimpleTempData<typename MESH_TYPE::VertContainer,LaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
LaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->N();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->N();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->N();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->N();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
//typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
if(!SmoothSelected || (*vi).IsS())
(*vi).N()=TD[*vi].sum/TD[*vi].cnt;
}
TD.Stop();
};
// Smooth solo lungo la direzione di vista
// alpha e' compreso fra 0(no smoot) e 1 (tutto smoot)
// Nota che se smootare il bordo puo far fare bandierine.
template<class MESH_TYPE>
void DepthSmooth(MESH_TYPE &m,
const typename MESH_TYPE::CoordType & viewpoint,
const typename MESH_TYPE::ScalarType alpha,
int step, bool SmoothBorder=false )
{
typedef typename MESH_TYPE::CoordType v_type;
typedef typename MESH_TYPE::ScalarType s_type;
//const typename MESH_TYPE::CoordType viewpoint;
//const typename MESH_TYPE::ScalarType alpha;
SimpleTempData<typename MESH_TYPE::VertContainer,LaplacianInfo<typename MESH_TYPE::ScalarType> > TD(m.vert);
LaplacianInfo<typename MESH_TYPE::ScalarType> lpz;
lpz.sum=typename MESH_TYPE::CoordType(0,0,0);
lpz.cnt=0;
TD.Start(lpz);
for(int i=0;i<step;++i)
{
typename MESH_TYPE::VertexIterator vi;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
TD[*vi]=lpz;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if(!(*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Supervisor_P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Supervisor_P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
// si azzaera i dati per i vertici di bordo
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)]=lpz;
TD[(*fi).V1(j)]=lpz;
}
// se l'edge j e' di bordo si deve mediare solo con gli adiacenti
if(SmoothBorder)
for(fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
for(int j=0;j<3;++j)
if((*fi).IsB(j))
{
TD[(*fi).V(j)].sum+=(*fi).V1(j)->Supervisor_P();
TD[(*fi).V1(j)].sum+=(*fi).V(j)->Supervisor_P();
++TD[(*fi).V(j)].cnt;
++TD[(*fi).V1(j)].cnt;
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD() && TD[*vi].cnt>0 )
{
v_type np = TD[*vi].sum/TD[*vi].cnt;
v_type d = (*vi).Supervisor_P() - viewpoint; d.Normalize();
s_type s = d * ( np - (*vi).Supervisor_P() );
(*vi).Supervisor_P() += d * (s*alpha);
}
}
TD.Stop();
}
/****************************************************************************************************************/
/****************************************************************************************************************/
// Paso Double Smoothing
// The proposed
// approach is a two step method where in the first step the face normals
// are adjusted and then, in a second phase, the vertex positions are updated.
/****************************************************************************************************************/
/****************************************************************************************************************/
// Classi di info
template<class FLT>
class PDVertInfo
{
public:
Point3<FLT> np;
};
template<class FLT>
class PDFaceInfo
{
public:
Point3<FLT> m;
};
/***************************************************************************/
// Paso Doble Step 1 compute the smoothed normals
/***************************************************************************/
// Requirements:
// VF Topology
// Normalized Face Normals
//
// This is the Normal Smoothing approach of Shen and Berner
// Fuzzy Vector Median-Based Surface Smoothing TVCG 2004
template<class MESH_TYPE>
void NormalSmoothSB(MESH_TYPE &m,
SimpleTempData<typename MESH_TYPE::FaceContainer,PDFaceInfo< typename MESH_TYPE::ScalarType > > &TD,
typename MESH_TYPE::ScalarType sigma)
{
int i;
typedef typename MESH_TYPE::CoordType CoordType;
typedef typename MESH_TYPE::ScalarType ScalarType;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi)
{
CoordType bc=(*fi).Barycenter();
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
for(i=0;i<3;++i)
{
vcg::face::VFIterator<typename MESH_TYPE::FaceType> ep(&*fi,i);
while (!ep.End())
{
ep.f->ClearV();
++ep;
}
}
// 1) Effectively average the normals weighting them with
(*fi).SetV();
CoordType mm=CoordType(0,0,0);
for(i=0;i<3;++i)
{
vcg::face::VFIterator<typename MESH_TYPE::FaceType> ep(&*fi,i);
while (!ep.End())
{
if(! (*ep.f).IsV() )
{
if(sigma>0)
{
ScalarType dd=SquaredDistance(ep.f->Barycenter(),bc);
ScalarType ang=AngleN(ep.f->N(),(*fi).N());
mm+=ep.f->N()*exp((-sigma)*ang*ang/dd);
}
else mm+=ep.f->N();
(*ep.f).SetV();
}
++ep;
}
}
mm.Normalize();
TD[*fi].m=mm;
}
}
/***************************************************************************/
// Paso Doble Step 1 compute the smoothed normals
/***************************************************************************/
// Requirements:
// VF Topology
// Normalized Face Normals
//
// This is the Normal Smoothing approach bsased on a angle thresholded weighting
// sigma is in the 0 .. 1 range, it represent the cosine of a threshold angle.
// Only within the specified range are averaged toghether. The averagin is weighted with the
template<class MESH_TYPE>
void NormalSmooth(MESH_TYPE &m,
SimpleTempData<typename MESH_TYPE::FaceContainer,PDFaceInfo< typename MESH_TYPE::ScalarType > > &TD,
typename MESH_TYPE::ScalarType sigma)
{
int i;
typedef typename MESH_TYPE::CoordType CoordType;
typedef typename MESH_TYPE::ScalarType ScalarType;
typedef typename vcg::face::VFIterator<typename MESH_TYPE::FaceType> VFLocalIterator;
typename MESH_TYPE::FaceIterator fi;
for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
CoordType bc=Barycenter<typename MESH_TYPE::FaceType>(*fi);
// 1) Clear all the visited flag of faces that are vertex-adjacent to fi
for(i=0;i<3;++i)
{
VFLocalIterator ep(&*fi,i);
for (;!ep.End();++ep)
ep.f->ClearV();
}
// 1) Effectively average the normals weighting them with the squared difference of the angle similarity
// sigma is the cosine of a threshold angle. sigma \in 0..1
// sigma == 0 All the normals are averaged
// sigma == 1 Nothing is averaged.
// The averaging is weighted with the difference between normals. more similar the normal more important they are.
CoordType normalSum=CoordType(0,0,0);
for(i=0;i<3;++i)
{
VFLocalIterator ep(&*fi,i);
for (;!ep.End();++ep)
{
if(! (*ep.f).IsV() )
{
ScalarType cosang=ep.f->N()*(*fi).N();
if(cosang >= sigma)
{
ScalarType w = cosang-sigma;
normalSum += ep.f->N()*(w*w); // similar normals have a cosang very close to 1 so cosang - sigma is maximized
}
(*ep.f).SetV();
}
}
}
normalSum.Normalize();
TD[*fi].m=normalSum;
}
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).N()=TD[*fi].m;
}
/****************************************************************************************************************/
// Restituisce il gradiente dell'area del triangolo nel punto p.
// Nota che dovrebbe essere sempre un vettore che giace nel piano del triangolo e perpendicolare al lato opposto al vertice p.
// Ottimizzato con Maple e poi pesantemente a mano.
template <class FLT>
Point3<FLT> TriAreaGradient(Point3<FLT> &p,Point3<FLT> &p0,Point3<FLT> &p1)
{
Point3<FLT> dd = p1-p0;
Point3<FLT> d0 = p-p0;
Point3<FLT> d1 = p-p1;
Point3<FLT> grad;
FLT t16 = d0[1]* d1[2] - d0[2]* d1[1];
FLT t5 = -d0[2]* d1[0] + d0[0]* d1[2];
FLT t4 = -d0[0]* d1[1] + d0[1]* d1[0];
FLT delta= sqrtf(t4*t4 + t5*t5 +t16*t16);
grad[0]= (t5 * (-dd[2]) + t4 * ( dd[1]))/delta;
grad[1]= (t16 * (-dd[2]) + t4 * (-dd[0]))/delta;
grad[2]= (t16 * ( dd[1]) + t5 * ( dd[0]))/delta;
return grad;
}
template <class FLT>
Point3<FLT> CrossProdGradient(Point3<FLT> &p, Point3<FLT> &p0, Point3<FLT> &p1, Point3<FLT> &m)
{
Point3<FLT> grad;
Point3<FLT> p00=p0-p;
Point3<FLT> p01=p1-p;
grad[0] = (-p00[2] + p01[2])*m[1] + (-p01[1] + p00[1])*m[2];
grad[1] = (-p01[2] + p00[2])*m[0] + (-p00[0] + p01[0])*m[2];
grad[2] = (-p00[1] + p01[1])*m[0] + (-p01[0] + p00[0])*m[1];
return grad;
}
/*
Deve Calcolare il gradiente di
E(p) = A(p,p0,p1) (n - m)^2 =
A(...) (2-2nm) =
(p0-p)^(p1-p)
2A - 2A * ------------- m =
2A
2A - 2 (p0-p)^(p1-p) * m
*/
template <class FLT>
Point3<FLT> FaceErrorGrad(Point3<FLT> &p,Point3<FLT> &p0,Point3<FLT> &p1, Point3<FLT> &m)
{
return TriAreaGradient(p,p0,p1) *2.0f
- CrossProdGradient(p,p0,p1,m) *2.0f ;
}
/***************************************************************************/
// Paso Doble Step 2 Fitta la mesh a un dato insieme di normali
/***************************************************************************/
template<class MESH_TYPE>
void FitMesh(MESH_TYPE &m,
SimpleTempData<typename MESH_TYPE::VertContainer, PDVertInfo<typename MESH_TYPE::ScalarType> > &TDV,
SimpleTempData<typename MESH_TYPE::FaceContainer, PDFaceInfo<typename MESH_TYPE::ScalarType> > &TDF,
float lambda)
{
//vcg::face::Pos<typename MESH_TYPE::FaceType> ep;
vcg::face::VFIterator<typename MESH_TYPE::FaceType> ep;
typename MESH_TYPE::VertexIterator vi;
typedef typename MESH_TYPE::ScalarType ScalarType;
typedef typename MESH_TYPE::CoordType CoordType;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
CoordType ErrGrad=CoordType(0,0,0);
ep.f=(*vi).VFp();
ep.z=(*vi).VFi();
while (!ep.End())
{
ErrGrad+=FaceErrorGrad(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P(),ep.f->V2(ep.z)->P(),TDF[ep.f].m);
++ep;
}
TDV[*vi].np=(*vi).P()-ErrGrad*(ScalarType)lambda;
}
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
(*vi).P()=TDV[*vi].np;
}
/****************************************************************************************************************/
template<class MESH_TYPE>
void FastFitMesh(MESH_TYPE &m,
SimpleTempData<typename MESH_TYPE::VertContainer, PDVertInfo<typename MESH_TYPE::ScalarType> > &TDV,
SimpleTempData<typename MESH_TYPE::FaceContainer, PDFaceInfo<typename MESH_TYPE::ScalarType> > &TDF,
bool OnlySelected=false)
{
//vcg::face::Pos<typename MESH_TYPE::FaceType> ep;
vcg::face::VFIterator<typename MESH_TYPE::FaceType> ep;
typename MESH_TYPE::VertexIterator vi;
typedef typename MESH_TYPE::ScalarType ScalarType;
typedef typename MESH_TYPE::CoordType CoordType;
typedef typename vcg::face::VFIterator<typename MESH_TYPE::FaceType> VFLocalIterator;
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
{
CoordType Sum(0,0,0);
ScalarType cnt=0;
VFLocalIterator ep(&*vi);
for (;!ep.End();++ep)
{
CoordType bc=Barycenter<typename MESH_TYPE::FaceType>(*ep.F());
Sum += ep.F()->N()*(ep.F()->N()*(bc - (*vi).P()));
++cnt;
}
TDV[*vi].np=(*vi).P()+ Sum*(1.0/cnt);
}
if(OnlySelected)
{
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
if((*vi).IsS()) (*vi).P()=TDV[*vi].np;
}
else
{
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
(*vi).P()=TDV[*vi].np;
}
}
template<class MeshType>
void PasoDobleSmooth(MeshType &m, int step, typename MeshType::ScalarType Sigma=0, int FitStep=10, typename MeshType::ScalarType FitLambda=0.05)
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
SimpleTempData< typename MeshType::VertContainer, PDVertInfo<ScalarType> > TDV(m.vert);
SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo<ScalarType> > TDF(m.face);
PDVertInfo<ScalarType> lpzv;
lpzv.np=CoordType(0,0,0);
PDFaceInfo<ScalarType> lpzf;
lpzf.m=CoordType(0,0,0);
assert(m.HasVFTopology());
m.HasVFTopology();
TDV.Start(lpzv);
TDF.Start(lpzf);
for(int j=0;j<step;++j)
{
vcg::tri::UpdateNormals<MeshType>::PerFace(m);
NormalSmooth<MeshType>(m,TDF,Sigma);
for(int k=0;k<FitStep;k++)
FitMesh<MeshType>(m,TDV,TDF,FitLambda);
}
TDF.Stop();
TDV.Stop();
}
// The sigma parameter affect the normal smoothing step
template<class MeshType>
void PasoDobleSmoothFast(MeshType &m, int step, typename MeshType::ScalarType Sigma=0, int FitStep=50, bool SmoothSelected =false)
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
SimpleTempData< typename MeshType::VertContainer, PDVertInfo<ScalarType> > TDV(m.vert);
SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo<ScalarType> > TDF(m.face);
PDVertInfo<ScalarType> lpzv;
lpzv.np=CoordType(0,0,0);
PDFaceInfo<ScalarType> lpzf;
lpzf.m=CoordType(0,0,0);
assert(m.HasVFTopology());
m.HasVFTopology();
TDV.Start(lpzv);
TDF.Start(lpzf);
for(int j=0;j<step;++j)
NormalSmooth<MeshType>(m,TDF,Sigma);
for(int j=0;j<FitStep;++j)
FastFitMesh<MeshType>(m,TDV,TDF,SmoothSelected);
TDF.Stop();
TDV.Stop();
}
} // End namespace vcg
#endif // VCG_SMOOTH