635 lines
22 KiB
C++
635 lines
22 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef RANSAC_MATCHING_H
|
|
#define RANSAC_MATCHING_H
|
|
#include<vcg/complex/algorithms/point_sampling.h>
|
|
#include<vcg/complex/algorithms/update/color.h>
|
|
#include<vcg/complex/algorithms/smooth.h>
|
|
#include<vcg/space/index/kdtree/kdtree.h>
|
|
#include<vcg/space/point_matching.h>
|
|
namespace vcg
|
|
{
|
|
/** BaseFeature a no-feature feature
|
|
*
|
|
* Basically it serve the purpose of evaluating the ransac framework factoring out the goodness of the feature.
|
|
*
|
|
*/
|
|
template <class MeshType>
|
|
class BaseFeature
|
|
{
|
|
public:
|
|
BaseFeature():_v(0) {}
|
|
typename MeshType::VertexType *_v;
|
|
typename MeshType::CoordType P() {return _v->cP();}
|
|
};
|
|
|
|
|
|
template <class MeshType>
|
|
class BaseFeatureSet
|
|
{
|
|
public:
|
|
typedef BaseFeature<MeshType> FeatureType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
class Param
|
|
{
|
|
public:
|
|
Param()
|
|
{
|
|
featureSampleRatio = 0.5; // the number of feature that we choose on the total number of samples.
|
|
}
|
|
|
|
ScalarType featureSampleRatio;
|
|
};
|
|
|
|
|
|
std::vector<FeatureType> fixFeatureVec;
|
|
std::vector<FeatureType> movFeatureVec;
|
|
|
|
FeatureType &ff(int i) { return fixFeatureVec[i]; }
|
|
FeatureType &mf(int i) { return movFeatureVec[i]; }
|
|
int ffNum() const { return fixFeatureVec.size(); }
|
|
int mfNum() const { return movFeatureVec.size(); }
|
|
|
|
void Init(MeshType &fix, MeshType &mov,
|
|
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec,
|
|
Param &fpp)
|
|
{
|
|
this->fixFeatureVec.resize(fixSampleVec.size()*fpp.featureSampleRatio);
|
|
for(int i=0;i<fixFeatureVec.size();++i)
|
|
this->fixFeatureVec[i]._v = fixSampleVec[i];
|
|
|
|
this->movFeatureVec.resize(movSampleVec.size()*fpp.featureSampleRatio);
|
|
for(int i=0;i<movFeatureVec.size();++i)
|
|
this->movFeatureVec[i]._v = movSampleVec[i];
|
|
|
|
printf("Generated %i Features on Fix\n",this->fixFeatureVec.size());
|
|
printf("Generated %i Features on Mov\n",this->movFeatureVec.size());
|
|
}
|
|
|
|
// Returns the indexes of all the fix features matching a given one (from mov usually)
|
|
// remember that the idea is that
|
|
// we are aliging mov (that could be a single map) to fix (that could be a set of already aligned maps)
|
|
void getMatchingFixFeatureVec(FeatureType &q, vector<int> &ffiVec, size_t maxMatchingFeature)
|
|
{
|
|
ffiVec.resize(std::min(fixFeatureVec.size(),maxMatchingFeature));
|
|
|
|
for(int i=0;i<ffiVec.size();++i)
|
|
ffiVec[i]=i;
|
|
}
|
|
};
|
|
|
|
/*******************/
|
|
|
|
template <class MeshType>
|
|
class NDFeature
|
|
{
|
|
public:
|
|
NDFeature():_v(0) {}
|
|
typename MeshType::VertexType *_v;
|
|
typename MeshType::CoordType nd; //
|
|
typename MeshType::CoordType P() {return _v->cP();}
|
|
};
|
|
|
|
|
|
template <class MeshType>
|
|
class NDFeatureSet
|
|
{
|
|
public:
|
|
typedef NDFeature<MeshType> FeatureType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
|
|
class Param
|
|
{
|
|
public:
|
|
Param()
|
|
{
|
|
levAbs=CoordType(0,0,0);
|
|
levPerc[0] = 0.01;
|
|
levPerc[1] = levPerc[0]*2.0;
|
|
levPerc[2] = levPerc[1]*2.0;
|
|
}
|
|
|
|
CoordType levPerc;
|
|
CoordType levAbs;
|
|
};
|
|
|
|
std::vector<FeatureType> fixFeatureVec;
|
|
std::vector<FeatureType> movFeatureVec;
|
|
KdTree<ScalarType> *fixFeatureTree;
|
|
|
|
FeatureType &ff(int i) { return fixFeatureVec[i]; }
|
|
FeatureType &mf(int i) { return movFeatureVec[i]; }
|
|
int ffNum() const { return fixFeatureVec.size(); }
|
|
int mfNum() const { return movFeatureVec.size(); }
|
|
|
|
void Init(MeshType &fix, MeshType &mov,
|
|
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec, Param &pp)
|
|
{
|
|
ScalarType dd = std::max(fix.bbox.Diag(),mov.bbox.Diag());
|
|
if(pp.levAbs == CoordType(0,0,0))
|
|
pp.levAbs= pp.levPerc * dd;
|
|
|
|
BuildNDFeatureVector(fix,fixSampleVec,pp.levAbs,fixFeatureVec);
|
|
BuildNDFeatureVector(mov,movSampleVec,pp.levAbs,movFeatureVec);
|
|
|
|
ConstDataWrapper<CoordType> cdw( &(fixFeatureVec[0].nd), fixFeatureVec.size(), sizeof(FeatureType));
|
|
fixFeatureTree = new KdTree<ScalarType>(cdw);
|
|
|
|
printf("Generated %i ND Features on Fix\n",this->fixFeatureVec.size());
|
|
printf("Generated %i ND Features on Mov\n",this->movFeatureVec.size());
|
|
}
|
|
|
|
|
|
static void BuildNDFeatureVector(MeshType &m, std::vector<VertexType *> &sampleVec, Point3f &distLev, std::vector<FeatureType> &featureVec )
|
|
{
|
|
tri::UpdateNormal<MeshType>::PerVertexNormalized(m);
|
|
tri::Smooth<MeshType>::VertexNormalLaplacian(m,10);
|
|
|
|
VertexConstDataWrapper<MeshType > ww(m);
|
|
KdTree<ScalarType> tree(ww);
|
|
featureVec.resize(sampleVec.size());
|
|
const Point3f sqDistLev(distLev[0]*distLev[0], distLev[1]*distLev[1], distLev[2]*distLev[2]);
|
|
for(int i=0;i<sampleVec.size();++i)
|
|
{
|
|
featureVec[i]._v=sampleVec[i];
|
|
std::vector<unsigned int> ptIndVec;
|
|
std::vector<ScalarType> sqDistVec;
|
|
tree.doQueryDist(sampleVec[i]->P(), distLev[2], ptIndVec, sqDistVec);
|
|
Point3f varSum(0,0,0);
|
|
Point3i varCnt(0,0,0);
|
|
|
|
for(int j=0;j<sqDistVec.size();++j)
|
|
{
|
|
ScalarType nDist = Distance(m.vert[i].N(),m.vert[ptIndVec[j]].N());
|
|
if(sqDistVec[j]<sqDistLev[0]) {
|
|
varSum[0] += nDist;
|
|
++varCnt[0];
|
|
}
|
|
if(sqDistVec[j]<sqDistLev[1]) {
|
|
varSum[1] += nDist;
|
|
++varCnt[1];
|
|
}
|
|
{
|
|
varSum[2] += nDist;
|
|
++varCnt[2];
|
|
}
|
|
}
|
|
featureVec[i].nd[0] = varSum[0]/ScalarType(varCnt[0]);
|
|
featureVec[i].nd[1] = varSum[1]/ScalarType(varCnt[1]);
|
|
featureVec[i].nd[2] = varSum[2]/ScalarType(varCnt[2]);
|
|
}
|
|
}
|
|
|
|
|
|
// Returns the indexes of all the fix features matching a given one (from mov usually)
|
|
void getMatchingFixFeatureVec(FeatureType &q, vector<int> &ffiVec, int maxNum)
|
|
{
|
|
ffiVec.clear();
|
|
typename KdTree<ScalarType>::PriorityQueue pq;
|
|
this->fixFeatureTree->doQueryK(q.nd,maxNum,pq);
|
|
for(int i=0;i<pq.getNofElements();++i)
|
|
{
|
|
ffiVec.push_back(pq.getIndex(i));
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
/** Ransac Framework
|
|
*
|
|
* A ransac framework for mesh-mesh rough alignment.
|
|
* Templated on the featureSet
|
|
*
|
|
* A feature set must expose
|
|
* - A method for intializing features on a mesh
|
|
* - A method to return up to <k> features matching a given feature
|
|
*
|
|
* The framework, given two meshes (fix and mov), will search for a triplet of
|
|
* matching features that brings mov onto fix.
|
|
*
|
|
* Validity of a transformation is checked by mean of two poisson disk sampling of the input meshes.
|
|
*/
|
|
|
|
|
|
template <class MeshType, class FeatureSetType>
|
|
class RansacFramework
|
|
{
|
|
typedef typename FeatureSetType::FeatureType FeatureType;
|
|
typedef typename FeatureSetType::Param FeatureParam;
|
|
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::BoxType BoxType;
|
|
typedef typename MeshType::ScalarType ScalarType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::EdgeType EdgeType;
|
|
typedef typename MeshType::EdgeIterator EdgeIterator;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::FaceContainer FaceContainer;
|
|
typedef Matrix44<ScalarType> Matrix44Type;
|
|
|
|
public:
|
|
class Param
|
|
{
|
|
public:
|
|
Param()
|
|
{
|
|
iterMax=100;
|
|
samplingRadiusPerc=0.005;
|
|
samplingRadiusAbs=0;
|
|
evalSize=1000;
|
|
inlierRatioThr=0.3;
|
|
inlierDistanceThrPerc = 1.5; // the distance between a transformed mov sample and the corresponding on fix should be 1.5 * sampling dist.
|
|
congruenceThrPerc = 2.0; // the distance between two matching features must be within 2.0 * sampling distance
|
|
minFeatureDistancePerc = 4.0; // the distance between two chosen features must be at least 4.0 * sampling distance
|
|
maxMatchingFeatureNum = 100;
|
|
areaThrPerc = 20.0; // Triplets that make small triangles are discarded
|
|
|
|
}
|
|
|
|
ScalarType inlierRatioThr;
|
|
ScalarType inlierDistanceThrPerc;
|
|
ScalarType congruenceThrPerc;
|
|
ScalarType minFeatureDistancePerc;
|
|
ScalarType samplingRadiusPerc;
|
|
ScalarType samplingRadiusAbs;
|
|
ScalarType areaThrPerc;
|
|
int iterMax;
|
|
int evalSize;
|
|
int maxMatchingFeatureNum;
|
|
|
|
ScalarType inlierSquareThr() const { return pow(samplingRadiusAbs* inlierDistanceThrPerc,2); }
|
|
};
|
|
|
|
class Candidate
|
|
{
|
|
public:
|
|
int fixInd[3];
|
|
int movInd[3];
|
|
int inlierNum;
|
|
int evalSize;
|
|
Matrix44Type Tr;
|
|
ScalarType err() const {return float(inlierNum)/float(evalSize);}
|
|
bool operator <(const Candidate &cc) const
|
|
{
|
|
return this->err() > cc.err();
|
|
}
|
|
|
|
};
|
|
|
|
FeatureSetType FS;
|
|
std::vector<Point3f> fixConsensusVec, movConsensusVec;
|
|
KdTree<ScalarType> *consensusTree;
|
|
|
|
|
|
// Given three pairs of sufficiently different distances (e.g. the edges of a scalene triangle)
|
|
// it finds the permutation that brings the vertexes so that the distances match.
|
|
// The meaning of the permutation vector nm0,nm1,nm2 is that the (N)ew index of (M)ov vertx i is the value of nmi
|
|
|
|
bool FindPermutation(int d01, int d02, int d12, int m01, int m02, int m12, int nm[], Param &pp)
|
|
{
|
|
ScalarType eps = pp.samplingRadiusAbs*2.0;
|
|
|
|
if(fabs(d01-m01)<eps) {
|
|
if(fabs(d02-m02)<eps) {
|
|
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=1;nm[2]=2; return true; }
|
|
else return false;
|
|
}
|
|
if(fabs(d02-m12)<eps) {
|
|
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=0;nm[2]=2; return true; }
|
|
else return false;
|
|
}
|
|
}
|
|
|
|
if(fabs(d01-m02)<eps) {
|
|
if(fabs(d02-m01)<eps) {
|
|
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=2;nm[2]=1; return true; }
|
|
else return false;
|
|
}
|
|
if(fabs(d02-m12)<eps) {
|
|
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=0;nm[2]=1; return true; }
|
|
else return false;
|
|
}
|
|
}
|
|
|
|
if(fabs(d01-m12)<eps) {
|
|
if(fabs(d02-m01)<eps) {
|
|
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=2;nm[2]=0; return true; }
|
|
else return false;
|
|
}
|
|
if(fabs(d02-m02)<eps) {
|
|
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=1;nm[2]=0; return true; }
|
|
else return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
// Scan the feature set of
|
|
void EvaluateFeature(int testSize, const char *filename, Param &pp)
|
|
{
|
|
// VertexConstDataWrapper<MeshType> ww(fixM);
|
|
// KdTree<ScalarType>(ww) mTree;
|
|
MeshType tmpM;
|
|
int neededSizeSum=0;
|
|
int foundCnt=0;
|
|
printf("Testing Feature size %i\n",testSize);
|
|
for(int i=0;i<FS.mfNum();++i)
|
|
{
|
|
int neededSize = testSize;
|
|
for(int j=1;j<neededSize;++j)
|
|
{
|
|
std::vector<int> closeFeatureVec;
|
|
FS.getMatchingFixFeatureVec(FS.mf(i), closeFeatureVec, j);
|
|
for(int k=0; k<closeFeatureVec.size();++k)
|
|
{
|
|
if(Distance(FS.mf(i).P(),FS.ff(closeFeatureVec[k]).P() )<pp.samplingRadiusAbs *3.0 )
|
|
neededSize = j;
|
|
}
|
|
}
|
|
tri::Allocator<MeshType>::AddVertex(tmpM, FS.mf(i).P());
|
|
tmpM.vert.back().Q() = neededSize;
|
|
neededSizeSum+=neededSize;
|
|
if(neededSize<testSize) foundCnt++;
|
|
}
|
|
|
|
tri::UpdateColor<MeshType>::PerVertexQualityRamp(tmpM);
|
|
tri::io::ExporterPLY<MeshType>::Save(tmpM,filename, tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY);
|
|
printf("Found %i / %i Average Needed Size %5.2f on %i\n",foundCnt,FS.mfNum(), float(neededSizeSum)/FS.mfNum(),testSize);
|
|
|
|
}
|
|
|
|
// The main loop.
|
|
// Choose three points on mov that make a scalene triangle
|
|
// and search on fix three other points with matchng distances
|
|
|
|
void Process_SearchEvaluateTriple (vector<Candidate> &cVec, Param &pp)
|
|
{
|
|
math::MarsenneTwisterRNG rnd;
|
|
// ScalarType congruenceEps = pow(pp.samplingRadiusAbs * pp.congruenceThrPerc,2.0f);
|
|
ScalarType congruenceEps = pp.samplingRadiusAbs * pp.congruenceThrPerc;
|
|
ScalarType minFeatureDistEps = pp.samplingRadiusAbs * pp.minFeatureDistancePerc;
|
|
ScalarType minAreaThr = pp.samplingRadiusAbs * pp.samplingRadiusAbs *pp.areaThrPerc;
|
|
printf("Starting search congruenceEps = samplingRadiusAbs * 3.0 = %6.2f \n",congruenceEps);
|
|
int iterCnt=0;
|
|
|
|
while ( (iterCnt < pp.iterMax) && (cVec.size()<100) )
|
|
{
|
|
Candidate c;
|
|
// Choose a random pair of features from mov
|
|
c.movInd[0] = rnd.generate(FS.mfNum());
|
|
c.movInd[1] = rnd.generate(FS.mfNum());
|
|
ScalarType d01 = Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[1]).P());
|
|
if( d01 > minFeatureDistEps )
|
|
{
|
|
c.movInd[2] = rnd.generate(FS.mfNum());
|
|
ScalarType d02=Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[2]).P());
|
|
ScalarType d12=Distance(FS.mf(c.movInd[1]).P(),FS.mf(c.movInd[2]).P());
|
|
ScalarType areaTri = DoubleArea(Triangle3<ScalarType>(FS.mf(c.movInd[0]).P(), FS.mf(c.movInd[1]).P(), FS.mf(c.movInd[2]).P() ));
|
|
if( ( d02 > minFeatureDistEps ) && // Sample are sufficiently distant
|
|
( d12 > minFeatureDistEps ) &&
|
|
( areaTri > minAreaThr) &&
|
|
( fabs(d01-d02) > congruenceEps ) && // and they make a scalene triangle
|
|
( fabs(d01-d12) > congruenceEps ) &&
|
|
( fabs(d12-d02) > congruenceEps ) )
|
|
{
|
|
// Find a congruent triple on mov
|
|
printf("Starting search of a [%i] congruent triple for %4i %4i %4i - %6.2f %6.2f %6.2f\n",
|
|
iterCnt,c.movInd[0],c.movInd[1],c.movInd[2],d01,d02,d12);
|
|
// As a first Step we ask for three vectors of matching features;
|
|
|
|
std::vector<int> fixFeatureVec0;
|
|
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[0]), fixFeatureVec0,pp.maxMatchingFeatureNum);
|
|
std::vector<int> fixFeatureVec1;
|
|
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[1]), fixFeatureVec1,pp.maxMatchingFeatureNum);
|
|
std::vector<int> fixFeatureVec2;
|
|
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[2]), fixFeatureVec2,pp.maxMatchingFeatureNum);
|
|
|
|
int congrNum=0;
|
|
int congrGoodNum=0;
|
|
for(int i=0;i<fixFeatureVec0.size();++i)
|
|
{
|
|
if(cVec.size()>100) break;
|
|
c.fixInd[0]=fixFeatureVec0[i];
|
|
for(int j=0;j<fixFeatureVec1.size();++j)
|
|
{
|
|
if(cVec.size()>100) break;
|
|
c.fixInd[1]=fixFeatureVec1[j];
|
|
ScalarType m01 = Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[1]).P());
|
|
if( (fabs(m01-d01)<congruenceEps) )
|
|
{
|
|
// printf("- Found a congruent pair %i %i %6.2f\n", c.movInd[0],c.movInd[1], m01);
|
|
++congrNum;
|
|
for(int k=0;k<fixFeatureVec2.size();++k)
|
|
{
|
|
if(cVec.size()>100) break;
|
|
c.fixInd[2]=fixFeatureVec2[k];
|
|
ScalarType m02=Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[2]).P());
|
|
ScalarType m12=Distance(FS.ff(c.fixInd[1]).P(),FS.ff(c.fixInd[2]).P());
|
|
if( (fabs(m02-d02)<congruenceEps) && (fabs(m12-d12)<congruenceEps ) )
|
|
{
|
|
c.Tr = GenerateMatchingMatrix(c,pp);
|
|
|
|
EvaluateMatrix(c,pp);
|
|
if(c.err() > pp.inlierRatioThr ){
|
|
printf("- - Found %lu th good congruent triple %i %i %i -- %f / %i \n", cVec.size(), c.movInd[0],c.movInd[1],c.movInd[2],c.err(),pp.evalSize);
|
|
// printf(" - %4.3f %4.3f %4.3f - %4.3f %4.3f %4.3f \n",
|
|
// FS.ff(c.fixInd[0]).nd[0], FS.ff(c.fixInd[0]).nd[1], FS.ff(c.fixInd[0]).nd[2],
|
|
// FS.mf(c.movInd[0]).nd[0], FS.mf(c.movInd[0]).nd[1],FS.mf(c.movInd[0]).nd[2]);
|
|
|
|
++congrGoodNum;
|
|
cVec.push_back(c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
printf("Completed Search of congruent triple (found %i / %i good/congruent)\n",congrGoodNum,congrNum);
|
|
}
|
|
}
|
|
++iterCnt;
|
|
} // end While
|
|
|
|
printf("Found %lu candidates \n",cVec.size());
|
|
sort(cVec.begin(),cVec.end());
|
|
printf("best candidate %f \n",cVec[0].err());
|
|
|
|
pp.evalSize = FS.mfNum();
|
|
|
|
for(int i=0;i<cVec.size();++i)
|
|
EvaluateMatrix(cVec[i],pp);
|
|
|
|
sort(cVec.begin(),cVec.end());
|
|
|
|
printf("After re-evaluation best is %f",cVec[0].err());
|
|
|
|
|
|
|
|
} // end Process
|
|
|
|
|
|
/**
|
|
* @brief EvaluateMatrix
|
|
* @param c
|
|
* @param pp
|
|
*
|
|
* Evaluate the matrix resulting from a candidate.
|
|
* Done using the poisson sampling using only evalSize samples
|
|
*
|
|
*
|
|
*/
|
|
void EvaluateMatrix(Candidate &c, Param &pp)
|
|
{
|
|
c.inlierNum=0;
|
|
c.evalSize=pp.evalSize;
|
|
|
|
ScalarType sqThr = pp.inlierSquareThr();
|
|
int mid = pp.evalSize/2;
|
|
uint ind;
|
|
ScalarType squareDist;
|
|
std::vector<Point3f>::iterator pi=movConsensusVec.begin();
|
|
|
|
for(int j=0;j<2;++j)
|
|
{
|
|
for(int i=0;i<mid;++i)
|
|
{
|
|
Point3f qp = c.Tr*(*pi);
|
|
consensusTree->doQueryClosest(qp,ind,squareDist);
|
|
if(squareDist < sqThr)
|
|
++c.inlierNum;
|
|
++pi;
|
|
}
|
|
// Early bailout if after 1/2 of the test we have a very low consensus reject
|
|
if((j==0) && (c.inlierNum < mid/10))
|
|
{
|
|
c.inlierNum *=2;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void DumpInlier(MeshType &m, Candidate &c, Param &pp)
|
|
{
|
|
ScalarType sqThr = pp.inlierSquareThr();
|
|
for(int i=0;i<pp.evalSize;++i)
|
|
{
|
|
Point3f qp = c.Tr*movConsensusVec[i];
|
|
uint ind;
|
|
ScalarType squareDist;
|
|
consensusTree->doQueryClosest(qp,ind,squareDist);
|
|
if(squareDist < sqThr)
|
|
tri::Allocator<MeshType>::AddVertex(m,qp);
|
|
}
|
|
}
|
|
|
|
|
|
// Find the transformation that matches the mov onto the fix
|
|
// eg M * piMov = piFix
|
|
|
|
Matrix44f GenerateMatchingMatrix(Candidate &c, Param pp)
|
|
{
|
|
std::vector<Point3f> pFix(3);
|
|
pFix[0]= FS.ff(c.fixInd[0]).P();
|
|
pFix[1]= FS.ff(c.fixInd[1]).P();
|
|
pFix[2]= FS.ff(c.fixInd[2]).P();
|
|
|
|
std::vector<Point3f> pMov(3);
|
|
pMov[0]= FS.mf(c.movInd[0]).P();
|
|
pMov[1]= FS.mf(c.movInd[1]).P();
|
|
pMov[2]= FS.mf(c.movInd[2]).P();
|
|
|
|
Point3f upFix = vcg::Normal(pFix[0],pFix[1],pFix[2]);
|
|
Point3f upMov = vcg::Normal(pMov[0],pMov[1],pMov[2]);
|
|
|
|
upFix.Normalize();
|
|
upMov.Normalize();
|
|
|
|
upFix *= Distance(pFix[0],pFix[1]);
|
|
upMov *= Distance(pMov[0],pMov[1]);
|
|
|
|
for(int i=0;i<3;++i) pFix.push_back(pFix[i]+upFix);
|
|
for(int i=0;i<3;++i) pMov.push_back(pMov[i]+upMov);
|
|
|
|
Matrix44f res;
|
|
ComputeRigidMatchMatrix(pFix,pMov,res);
|
|
return res;
|
|
}
|
|
|
|
|
|
void Init(MeshType &fixM, MeshType &movM, Param &pp, FeatureParam &fpp)
|
|
{
|
|
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(fixM);
|
|
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(movM);
|
|
|
|
// First a bit of Sampling
|
|
typedef tri::TrivialPointerSampler<MeshType> BaseSampler;
|
|
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pdp;
|
|
pdp.randomSeed = 0;
|
|
pdp.bestSampleChoiceFlag = true;
|
|
pdp.bestSamplePoolSize = 20;
|
|
int t0=clock();
|
|
pp.samplingRadiusAbs = pp.samplingRadiusPerc *fixM.bbox.Diag();
|
|
BaseSampler pdSampler;
|
|
std::vector<VertexType *> fixSampleVec;
|
|
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, fixM, pp.samplingRadiusAbs,pdp);
|
|
std::swap(pdSampler.sampleVec,fixSampleVec);
|
|
std::vector<VertexType *> movSampleVec;
|
|
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, movM, pp.samplingRadiusAbs,pdp);
|
|
std::swap(pdSampler.sampleVec,movSampleVec);
|
|
int t1=clock();
|
|
printf("Poisson Sampling of surfaces %5.2f ( %iv and %iv) \n",float(t1-t0)/CLOCKS_PER_SEC,fixSampleVec.size(),movSampleVec.size());
|
|
printf("Sampling Radius %f \n",pp.samplingRadiusAbs);
|
|
|
|
for(int i=0;i<fixSampleVec.size();++i)
|
|
this->fixConsensusVec.push_back(fixSampleVec[i]->P());
|
|
|
|
for(int i=0;i<movSampleVec.size();++i)
|
|
this->movConsensusVec.push_back(movSampleVec[i]->P());
|
|
|
|
FS.Init(fixM, movM, fixSampleVec, movSampleVec, fpp);
|
|
|
|
std::random_shuffle(movConsensusVec.begin(),movConsensusVec.end());
|
|
|
|
VectorConstDataWrapper<std::vector<CoordType> > ww(fixConsensusVec);
|
|
consensusTree = new KdTree<ScalarType>(ww);
|
|
}
|
|
|
|
|
|
};
|
|
|
|
} //end namespace vcg
|
|
|
|
|
|
#endif // RANSAC_MATCHING_H
|