vcglib/vcg/complex/algorithms/ransac_matching.h

635 lines
22 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef RANSAC_MATCHING_H
#define RANSAC_MATCHING_H
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/update/color.h>
#include<vcg/complex/algorithms/smooth.h>
#include<vcg/space/index/kdtree/kdtree.h>
#include<vcg/space/point_matching.h>
namespace vcg
{
/** BaseFeature a no-feature feature
*
* Basically it serve the purpose of evaluating the ransac framework factoring out the goodness of the feature.
*
*/
template <class MeshType>
class BaseFeature
{
public:
BaseFeature():_v(0) {}
typename MeshType::VertexType *_v;
typename MeshType::CoordType P() {return _v->cP();}
};
template <class MeshType>
class BaseFeatureSet
{
public:
typedef BaseFeature<MeshType> FeatureType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::ScalarType ScalarType;
class Param
{
public:
Param()
{
featureSampleRatio = 0.5; // the number of feature that we choose on the total number of samples.
}
ScalarType featureSampleRatio;
};
std::vector<FeatureType> fixFeatureVec;
std::vector<FeatureType> movFeatureVec;
FeatureType &ff(int i) { return fixFeatureVec[i]; }
FeatureType &mf(int i) { return movFeatureVec[i]; }
int ffNum() const { return fixFeatureVec.size(); }
int mfNum() const { return movFeatureVec.size(); }
void Init(MeshType &fix, MeshType &mov,
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec,
Param &fpp)
{
this->fixFeatureVec.resize(fixSampleVec.size()*fpp.featureSampleRatio);
for(int i=0;i<fixFeatureVec.size();++i)
this->fixFeatureVec[i]._v = fixSampleVec[i];
this->movFeatureVec.resize(movSampleVec.size()*fpp.featureSampleRatio);
for(int i=0;i<movFeatureVec.size();++i)
this->movFeatureVec[i]._v = movSampleVec[i];
printf("Generated %i Features on Fix\n",this->fixFeatureVec.size());
printf("Generated %i Features on Mov\n",this->movFeatureVec.size());
}
// Returns the indexes of all the fix features matching a given one (from mov usually)
// remember that the idea is that
// we are aliging mov (that could be a single map) to fix (that could be a set of already aligned maps)
void getMatchingFixFeatureVec(FeatureType &q, vector<int> &ffiVec, size_t maxMatchingFeature)
{
ffiVec.resize(std::min(fixFeatureVec.size(),maxMatchingFeature));
for(int i=0;i<ffiVec.size();++i)
ffiVec[i]=i;
}
};
/*******************/
template <class MeshType>
class NDFeature
{
public:
NDFeature():_v(0) {}
typename MeshType::VertexType *_v;
typename MeshType::CoordType nd; //
typename MeshType::CoordType P() {return _v->cP();}
};
template <class MeshType>
class NDFeatureSet
{
public:
typedef NDFeature<MeshType> FeatureType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
class Param
{
public:
Param()
{
levAbs=CoordType(0,0,0);
levPerc[0] = 0.01;
levPerc[1] = levPerc[0]*2.0;
levPerc[2] = levPerc[1]*2.0;
}
CoordType levPerc;
CoordType levAbs;
};
std::vector<FeatureType> fixFeatureVec;
std::vector<FeatureType> movFeatureVec;
KdTree<ScalarType> *fixFeatureTree;
FeatureType &ff(int i) { return fixFeatureVec[i]; }
FeatureType &mf(int i) { return movFeatureVec[i]; }
int ffNum() const { return fixFeatureVec.size(); }
int mfNum() const { return movFeatureVec.size(); }
void Init(MeshType &fix, MeshType &mov,
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec, Param &pp)
{
ScalarType dd = std::max(fix.bbox.Diag(),mov.bbox.Diag());
if(pp.levAbs == CoordType(0,0,0))
pp.levAbs= pp.levPerc * dd;
BuildNDFeatureVector(fix,fixSampleVec,pp.levAbs,fixFeatureVec);
BuildNDFeatureVector(mov,movSampleVec,pp.levAbs,movFeatureVec);
ConstDataWrapper<CoordType> cdw( &(fixFeatureVec[0].nd), fixFeatureVec.size(), sizeof(FeatureType));
fixFeatureTree = new KdTree<ScalarType>(cdw);
printf("Generated %i ND Features on Fix\n",this->fixFeatureVec.size());
printf("Generated %i ND Features on Mov\n",this->movFeatureVec.size());
}
static void BuildNDFeatureVector(MeshType &m, std::vector<VertexType *> &sampleVec, Point3f &distLev, std::vector<FeatureType> &featureVec )
{
tri::UpdateNormal<MeshType>::PerVertexNormalized(m);
tri::Smooth<MeshType>::VertexNormalLaplacian(m,10);
VertexConstDataWrapper<MeshType > ww(m);
KdTree<ScalarType> tree(ww);
featureVec.resize(sampleVec.size());
const Point3f sqDistLev(distLev[0]*distLev[0], distLev[1]*distLev[1], distLev[2]*distLev[2]);
for(int i=0;i<sampleVec.size();++i)
{
featureVec[i]._v=sampleVec[i];
std::vector<unsigned int> ptIndVec;
std::vector<ScalarType> sqDistVec;
tree.doQueryDist(sampleVec[i]->P(), distLev[2], ptIndVec, sqDistVec);
Point3f varSum(0,0,0);
Point3i varCnt(0,0,0);
for(int j=0;j<sqDistVec.size();++j)
{
ScalarType nDist = Distance(m.vert[i].N(),m.vert[ptIndVec[j]].N());
if(sqDistVec[j]<sqDistLev[0]) {
varSum[0] += nDist;
++varCnt[0];
}
if(sqDistVec[j]<sqDistLev[1]) {
varSum[1] += nDist;
++varCnt[1];
}
{
varSum[2] += nDist;
++varCnt[2];
}
}
featureVec[i].nd[0] = varSum[0]/ScalarType(varCnt[0]);
featureVec[i].nd[1] = varSum[1]/ScalarType(varCnt[1]);
featureVec[i].nd[2] = varSum[2]/ScalarType(varCnt[2]);
}
}
// Returns the indexes of all the fix features matching a given one (from mov usually)
void getMatchingFixFeatureVec(FeatureType &q, vector<int> &ffiVec, int maxNum)
{
ffiVec.clear();
typename KdTree<ScalarType>::PriorityQueue pq;
this->fixFeatureTree->doQueryK(q.nd,maxNum,pq);
for(int i=0;i<pq.getNofElements();++i)
{
ffiVec.push_back(pq.getIndex(i));
}
}
};
/** Ransac Framework
*
* A ransac framework for mesh-mesh rough alignment.
* Templated on the featureSet
*
* A feature set must expose
* - A method for intializing features on a mesh
* - A method to return up to <k> features matching a given feature
*
* The framework, given two meshes (fix and mov), will search for a triplet of
* matching features that brings mov onto fix.
*
* Validity of a transformation is checked by mean of two poisson disk sampling of the input meshes.
*/
template <class MeshType, class FeatureSetType>
class RansacFramework
{
typedef typename FeatureSetType::FeatureType FeatureType;
typedef typename FeatureSetType::Param FeatureParam;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::BoxType BoxType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef Matrix44<ScalarType> Matrix44Type;
public:
class Param
{
public:
Param()
{
iterMax=100;
samplingRadiusPerc=0.005;
samplingRadiusAbs=0;
evalSize=1000;
inlierRatioThr=0.3;
inlierDistanceThrPerc = 1.5; // the distance between a transformed mov sample and the corresponding on fix should be 1.5 * sampling dist.
congruenceThrPerc = 2.0; // the distance between two matching features must be within 2.0 * sampling distance
minFeatureDistancePerc = 4.0; // the distance between two chosen features must be at least 4.0 * sampling distance
maxMatchingFeatureNum = 100;
areaThrPerc = 20.0; // Triplets that make small triangles are discarded
}
ScalarType inlierRatioThr;
ScalarType inlierDistanceThrPerc;
ScalarType congruenceThrPerc;
ScalarType minFeatureDistancePerc;
ScalarType samplingRadiusPerc;
ScalarType samplingRadiusAbs;
ScalarType areaThrPerc;
int iterMax;
int evalSize;
int maxMatchingFeatureNum;
ScalarType inlierSquareThr() const { return pow(samplingRadiusAbs* inlierDistanceThrPerc,2); }
};
class Candidate
{
public:
int fixInd[3];
int movInd[3];
int inlierNum;
int evalSize;
Matrix44Type Tr;
ScalarType err() const {return float(inlierNum)/float(evalSize);}
bool operator <(const Candidate &cc) const
{
return this->err() > cc.err();
}
};
FeatureSetType FS;
std::vector<Point3f> fixConsensusVec, movConsensusVec;
KdTree<ScalarType> *consensusTree;
// Given three pairs of sufficiently different distances (e.g. the edges of a scalene triangle)
// it finds the permutation that brings the vertexes so that the distances match.
// The meaning of the permutation vector nm0,nm1,nm2 is that the (N)ew index of (M)ov vertx i is the value of nmi
bool FindPermutation(int d01, int d02, int d12, int m01, int m02, int m12, int nm[], Param &pp)
{
ScalarType eps = pp.samplingRadiusAbs*2.0;
if(fabs(d01-m01)<eps) {
if(fabs(d02-m02)<eps) {
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=1;nm[2]=2; return true; }
else return false;
}
if(fabs(d02-m12)<eps) {
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=0;nm[2]=2; return true; }
else return false;
}
}
if(fabs(d01-m02)<eps) {
if(fabs(d02-m01)<eps) {
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=2;nm[2]=1; return true; }
else return false;
}
if(fabs(d02-m12)<eps) {
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=0;nm[2]=1; return true; }
else return false;
}
}
if(fabs(d01-m12)<eps) {
if(fabs(d02-m01)<eps) {
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=2;nm[2]=0; return true; }
else return false;
}
if(fabs(d02-m02)<eps) {
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=1;nm[2]=0; return true; }
else return false;
}
}
return false;
}
// Scan the feature set of
void EvaluateFeature(int testSize, const char *filename, Param &pp)
{
// VertexConstDataWrapper<MeshType> ww(fixM);
// KdTree<ScalarType>(ww) mTree;
MeshType tmpM;
int neededSizeSum=0;
int foundCnt=0;
printf("Testing Feature size %i\n",testSize);
for(int i=0;i<FS.mfNum();++i)
{
int neededSize = testSize;
for(int j=1;j<neededSize;++j)
{
std::vector<int> closeFeatureVec;
FS.getMatchingFixFeatureVec(FS.mf(i), closeFeatureVec, j);
for(int k=0; k<closeFeatureVec.size();++k)
{
if(Distance(FS.mf(i).P(),FS.ff(closeFeatureVec[k]).P() )<pp.samplingRadiusAbs *3.0 )
neededSize = j;
}
}
tri::Allocator<MeshType>::AddVertex(tmpM, FS.mf(i).P());
tmpM.vert.back().Q() = neededSize;
neededSizeSum+=neededSize;
if(neededSize<testSize) foundCnt++;
}
tri::UpdateColor<MeshType>::PerVertexQualityRamp(tmpM);
tri::io::ExporterPLY<MeshType>::Save(tmpM,filename, tri::io::Mask::IOM_VERTCOLOR + tri::io::Mask::IOM_VERTQUALITY);
printf("Found %i / %i Average Needed Size %5.2f on %i\n",foundCnt,FS.mfNum(), float(neededSizeSum)/FS.mfNum(),testSize);
}
// The main loop.
// Choose three points on mov that make a scalene triangle
// and search on fix three other points with matchng distances
void Process_SearchEvaluateTriple (vector<Candidate> &cVec, Param &pp)
{
math::MarsenneTwisterRNG rnd;
// ScalarType congruenceEps = pow(pp.samplingRadiusAbs * pp.congruenceThrPerc,2.0f);
ScalarType congruenceEps = pp.samplingRadiusAbs * pp.congruenceThrPerc;
ScalarType minFeatureDistEps = pp.samplingRadiusAbs * pp.minFeatureDistancePerc;
ScalarType minAreaThr = pp.samplingRadiusAbs * pp.samplingRadiusAbs *pp.areaThrPerc;
printf("Starting search congruenceEps = samplingRadiusAbs * 3.0 = %6.2f \n",congruenceEps);
int iterCnt=0;
while ( (iterCnt < pp.iterMax) && (cVec.size()<100) )
{
Candidate c;
// Choose a random pair of features from mov
c.movInd[0] = rnd.generate(FS.mfNum());
c.movInd[1] = rnd.generate(FS.mfNum());
ScalarType d01 = Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[1]).P());
if( d01 > minFeatureDistEps )
{
c.movInd[2] = rnd.generate(FS.mfNum());
ScalarType d02=Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[2]).P());
ScalarType d12=Distance(FS.mf(c.movInd[1]).P(),FS.mf(c.movInd[2]).P());
ScalarType areaTri = DoubleArea(Triangle3<ScalarType>(FS.mf(c.movInd[0]).P(), FS.mf(c.movInd[1]).P(), FS.mf(c.movInd[2]).P() ));
if( ( d02 > minFeatureDistEps ) && // Sample are sufficiently distant
( d12 > minFeatureDistEps ) &&
( areaTri > minAreaThr) &&
( fabs(d01-d02) > congruenceEps ) && // and they make a scalene triangle
( fabs(d01-d12) > congruenceEps ) &&
( fabs(d12-d02) > congruenceEps ) )
{
// Find a congruent triple on mov
printf("Starting search of a [%i] congruent triple for %4i %4i %4i - %6.2f %6.2f %6.2f\n",
iterCnt,c.movInd[0],c.movInd[1],c.movInd[2],d01,d02,d12);
// As a first Step we ask for three vectors of matching features;
std::vector<int> fixFeatureVec0;
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[0]), fixFeatureVec0,pp.maxMatchingFeatureNum);
std::vector<int> fixFeatureVec1;
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[1]), fixFeatureVec1,pp.maxMatchingFeatureNum);
std::vector<int> fixFeatureVec2;
FS.getMatchingFixFeatureVec(FS.mf(c.movInd[2]), fixFeatureVec2,pp.maxMatchingFeatureNum);
int congrNum=0;
int congrGoodNum=0;
for(int i=0;i<fixFeatureVec0.size();++i)
{
if(cVec.size()>100) break;
c.fixInd[0]=fixFeatureVec0[i];
for(int j=0;j<fixFeatureVec1.size();++j)
{
if(cVec.size()>100) break;
c.fixInd[1]=fixFeatureVec1[j];
ScalarType m01 = Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[1]).P());
if( (fabs(m01-d01)<congruenceEps) )
{
// printf("- Found a congruent pair %i %i %6.2f\n", c.movInd[0],c.movInd[1], m01);
++congrNum;
for(int k=0;k<fixFeatureVec2.size();++k)
{
if(cVec.size()>100) break;
c.fixInd[2]=fixFeatureVec2[k];
ScalarType m02=Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[2]).P());
ScalarType m12=Distance(FS.ff(c.fixInd[1]).P(),FS.ff(c.fixInd[2]).P());
if( (fabs(m02-d02)<congruenceEps) && (fabs(m12-d12)<congruenceEps ) )
{
c.Tr = GenerateMatchingMatrix(c,pp);
EvaluateMatrix(c,pp);
if(c.err() > pp.inlierRatioThr ){
printf("- - Found %lu th good congruent triple %i %i %i -- %f / %i \n", cVec.size(), c.movInd[0],c.movInd[1],c.movInd[2],c.err(),pp.evalSize);
// printf(" - %4.3f %4.3f %4.3f - %4.3f %4.3f %4.3f \n",
// FS.ff(c.fixInd[0]).nd[0], FS.ff(c.fixInd[0]).nd[1], FS.ff(c.fixInd[0]).nd[2],
// FS.mf(c.movInd[0]).nd[0], FS.mf(c.movInd[0]).nd[1],FS.mf(c.movInd[0]).nd[2]);
++congrGoodNum;
cVec.push_back(c);
}
}
}
}
}
}
printf("Completed Search of congruent triple (found %i / %i good/congruent)\n",congrGoodNum,congrNum);
}
}
++iterCnt;
} // end While
printf("Found %lu candidates \n",cVec.size());
sort(cVec.begin(),cVec.end());
printf("best candidate %f \n",cVec[0].err());
pp.evalSize = FS.mfNum();
for(int i=0;i<cVec.size();++i)
EvaluateMatrix(cVec[i],pp);
sort(cVec.begin(),cVec.end());
printf("After re-evaluation best is %f",cVec[0].err());
} // end Process
/**
* @brief EvaluateMatrix
* @param c
* @param pp
*
* Evaluate the matrix resulting from a candidate.
* Done using the poisson sampling using only evalSize samples
*
*
*/
void EvaluateMatrix(Candidate &c, Param &pp)
{
c.inlierNum=0;
c.evalSize=pp.evalSize;
ScalarType sqThr = pp.inlierSquareThr();
int mid = pp.evalSize/2;
uint ind;
ScalarType squareDist;
std::vector<Point3f>::iterator pi=movConsensusVec.begin();
for(int j=0;j<2;++j)
{
for(int i=0;i<mid;++i)
{
Point3f qp = c.Tr*(*pi);
consensusTree->doQueryClosest(qp,ind,squareDist);
if(squareDist < sqThr)
++c.inlierNum;
++pi;
}
// Early bailout if after 1/2 of the test we have a very low consensus reject
if((j==0) && (c.inlierNum < mid/10))
{
c.inlierNum *=2;
return;
}
}
}
void DumpInlier(MeshType &m, Candidate &c, Param &pp)
{
ScalarType sqThr = pp.inlierSquareThr();
for(int i=0;i<pp.evalSize;++i)
{
Point3f qp = c.Tr*movConsensusVec[i];
uint ind;
ScalarType squareDist;
consensusTree->doQueryClosest(qp,ind,squareDist);
if(squareDist < sqThr)
tri::Allocator<MeshType>::AddVertex(m,qp);
}
}
// Find the transformation that matches the mov onto the fix
// eg M * piMov = piFix
Matrix44f GenerateMatchingMatrix(Candidate &c, Param pp)
{
std::vector<Point3f> pFix(3);
pFix[0]= FS.ff(c.fixInd[0]).P();
pFix[1]= FS.ff(c.fixInd[1]).P();
pFix[2]= FS.ff(c.fixInd[2]).P();
std::vector<Point3f> pMov(3);
pMov[0]= FS.mf(c.movInd[0]).P();
pMov[1]= FS.mf(c.movInd[1]).P();
pMov[2]= FS.mf(c.movInd[2]).P();
Point3f upFix = vcg::Normal(pFix[0],pFix[1],pFix[2]);
Point3f upMov = vcg::Normal(pMov[0],pMov[1],pMov[2]);
upFix.Normalize();
upMov.Normalize();
upFix *= Distance(pFix[0],pFix[1]);
upMov *= Distance(pMov[0],pMov[1]);
for(int i=0;i<3;++i) pFix.push_back(pFix[i]+upFix);
for(int i=0;i<3;++i) pMov.push_back(pMov[i]+upMov);
Matrix44f res;
ComputeRigidMatchMatrix(pFix,pMov,res);
return res;
}
void Init(MeshType &fixM, MeshType &movM, Param &pp, FeatureParam &fpp)
{
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(fixM);
tri::UpdateNormal<MeshType>::PerVertexNormalizedPerFaceNormalized(movM);
// First a bit of Sampling
typedef tri::TrivialPointerSampler<MeshType> BaseSampler;
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pdp;
pdp.randomSeed = 0;
pdp.bestSampleChoiceFlag = true;
pdp.bestSamplePoolSize = 20;
int t0=clock();
pp.samplingRadiusAbs = pp.samplingRadiusPerc *fixM.bbox.Diag();
BaseSampler pdSampler;
std::vector<VertexType *> fixSampleVec;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, fixM, pp.samplingRadiusAbs,pdp);
std::swap(pdSampler.sampleVec,fixSampleVec);
std::vector<VertexType *> movSampleVec;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, movM, pp.samplingRadiusAbs,pdp);
std::swap(pdSampler.sampleVec,movSampleVec);
int t1=clock();
printf("Poisson Sampling of surfaces %5.2f ( %iv and %iv) \n",float(t1-t0)/CLOCKS_PER_SEC,fixSampleVec.size(),movSampleVec.size());
printf("Sampling Radius %f \n",pp.samplingRadiusAbs);
for(int i=0;i<fixSampleVec.size();++i)
this->fixConsensusVec.push_back(fixSampleVec[i]->P());
for(int i=0;i<movSampleVec.size();++i)
this->movConsensusVec.push_back(movSampleVec[i]->P());
FS.Init(fixM, movM, fixSampleVec, movSampleVec, fpp);
std::random_shuffle(movConsensusVec.begin(),movConsensusVec.end());
VectorConstDataWrapper<std::vector<CoordType> > ww(fixConsensusVec);
consensusTree = new KdTree<ScalarType>(ww);
}
};
} //end namespace vcg
#endif // RANSAC_MATCHING_H