vcglib/vcg/simplex/edge/component.h

366 lines
16 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_MESH
#error "This file should not be included alone. It is automatically included by complex.h"
#endif
#ifndef __VCG_EDGE_PLUS_COMPONENT
#define __VCG_EDGE_PLUS_COMPONENT
namespace vcg {
namespace edge {
/** \addtogroup EdgeComponentGroup
@{
*/
/*
Some naming Rules
All the Components that can be added to a vertex should be defined in the namespace edge:
*/
/*------------------------- EMPTY CORE COMPONENTS -----------------------------------------*/
template <class T> class EmptyCore: public T
{
public:
inline typename T::VertexType * & V( const int j ) { (void)j; assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * const & V( const int j ) const { (void)j; assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::VertexType * cV( const int j ) const { (void)j; assert(0); static typename T::VertexType *vp=0; return vp; }
inline typename T::CoordType & P( const int j ) { (void)j; assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType & P( const int j ) const { (void)j; assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
inline const typename T::CoordType & cP( const int j ) const { (void)j; assert(0); static typename T::CoordType coord(0, 0, 0); return coord; }
static bool HasEVAdjacency() { return false; }
static bool HasVertexRef() { return false; }
typedef vcg::Color4b ColorType;
ColorType &C() { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
ColorType cC() const { static ColorType dumcolor(vcg::Color4b::White); assert(0); return dumcolor; }
static bool HasColor() { return false; }
typedef float QualityType;
QualityType &Q() { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
QualityType cQ() const { static QualityType dummyQuality(0); assert(0); return dummyQuality; }
static bool HasQuality() { return false; }
typedef int MarkType;
inline void InitIMark() { }
inline int cIMark() const { assert(0); static int tmp=-1; return tmp;}
inline int &IMark() { assert(0); static int tmp=-1; return tmp;}
static bool HasMark() { return false; }
typedef int FlagType;
int &Flags() { static int dummyflags(0); assert(0); return dummyflags; }
int Flags() const { return 0; }
static bool HasFlags() { return false; }
typename T::EdgePointer &VEp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cVEp(const int & ) const { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &VEi(const int &){static int z=0; assert(0); return z;}
int cVEi(const int &) const {static int z=0; assert(0); return z;}
static bool HasVEAdjacency() { return false; }
typename T::EdgePointer &EEp(const int & ) { static typename T::EdgePointer ep=0; assert(0); return ep; }
typename T::EdgePointer cEEp(const int & ) const { static typename T::EdgePointer ep=0; assert(0); return ep; }
int &EEi(const int &){static int z=0; assert(0); return z;}
int cEEi(const int &) const {static int z=0; assert(0); return z;}
static bool HasEEAdjacency() { return false; }
typename T::HEdgePointer &EHp( ) { static typename T::HEdgePointer hp=0; assert(0); return hp; }
typename T::HEdgePointer cEHp( ) const { static typename T::HEdgePointer hp=0; assert(0); return hp; }
static bool HasEHAdjacency() { return false; }
typename T::FacePointer &EFp() { static typename T::FacePointer fp=0; assert(0); return fp; }
typename T::FacePointer cEFp() const { static typename T::FacePointer fp=0; assert(0); return fp; }
int &EFi() {static int z=0; return z;}
int &cEFi() const {static int z=0; return z;}
static bool HasEFAdjacency() { return false; }
template <class LeftF>
void ImportData(const LeftF & leftF) {T::ImportData(leftF);}
static void Name(std::vector<std::string> & name){T::Name(name);}
};
/*-------------------------- VertexRef ----------------------------------------*/
/*! \brief The references to the two vertexes of a edge
*
* Stored as pointers to the VertexType
*/
template <class T> class VertexRef: public T {
public:
VertexRef(){
v[0]=0;
v[1]=0;
}
typedef typename T::VertexType::CoordType CoordType;
typedef typename T::VertexType::ScalarType ScalarType;
inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<2); return v[j]; }
inline typename T::VertexType * const & V( const int j ) const { assert(j>=0 && j<2); return v[j]; }
inline typename T::VertexType * cV( const int j ) const { assert(j>=0 && j<2); return v[j]; }
// Shortcut per accedere ai punti delle facce
inline CoordType & P( const int j ) { assert(j>=0 && j<2); return v[j]->P(); }
inline const CoordType &cP( const int j ) const { assert(j>=0 && j<2); return v[j]->P(); }
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline typename T::VertexType * & V0( const int j ) { return V(j);}
inline typename T::VertexType * & V1( const int j ) { return V((j+1)%2);}
inline const typename T::VertexType * const & V0( const int j ) const { return V(j);}
inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%2);}
inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);}
inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%2);}
/// Shortcut per accedere ai punti delle facce
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%2)->P();}
inline const CoordType & P0( const int j ) const { return V(j)->P();}
inline const CoordType & P1( const int j ) const { return V((j+1)%2)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%2)->P();}
template <class LeftF>
void ImportData(const LeftF & leftF){ T::ImportData(leftF);}
static bool HasEVAdjacency() { return true; }
static bool HasVertexRef() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VertexRef"));T::Name(name);}
private:
typename T::VertexType *v[2];
};
template <class T> class EVAdj : public VertexRef<T>{};
/*-------------------------- INCREMENTAL MARK ----------------------------------------*/
/*! \brief \em Component: Per edge \b Incremental \b Mark
*
* An int that allows to efficently un-mark the whole mesh. \sa UnmarkAll
*/
template <class T> class Mark: public T {
public:
Mark():_imark(0){}
static bool HasMark() { return true; }
static bool HasMarkOcc() { return true; }
inline void InitIMark() { _imark = 0; }
inline int & IMark() { return _imark;}
inline const int & IMark() const {return _imark;}
template < class LeftV>
void ImportData(const LeftV & left ) { IMark() = left.IMark(); T::ImportData( left); }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Mark"));T::Name(name);}
private:
int _imark;
};
/*------------------------- FLAGS -----------------------------------------*/
/*! \brief \em Component: Per edge \b Flags
*
* This component stores a 32 bit array of bit flags. These bit flags are used for keeping track of selection, deletion, visiting etc. \sa \ref flags for more details on common uses of flags.
*/
template <class T> class BitFlags: public T {
public:
BitFlags(){_flags=0;}
typedef int FlagType;
int &Flags() {return _flags; }
int Flags() const {return _flags; }
template < class LeftV>
void ImportData(const LeftV & left ) { Flags() = left.Flags(); T::ImportData( left); }
static bool HasFlags() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("BitFlags"));T::Name(name);}
private:
int _flags;
};
/*-------------------------- Color ----------------------------------*/
/*! \brief \em Component: Per edge \b Color
*
* Usually most of the library expects a color stored as 4 unsigned chars (so the component you use is a \c vertex::Color4b)
* but you can also use float for the color components.
*/
template <class A, class T> class Color: public T {
public:
Color():_color(vcg::Color4b::White) {}
typedef A ColorType;
ColorType &C() { return _color; }
const ColorType &C() const { return _color; }
const ColorType &cC() const { return _color; }
template < class LeftV>
void ImportData(const LeftV & left ) { C() = left.cC(); T::ImportData( left); }
static bool HasColor() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Color"));T::Name(name);}
private:
ColorType _color;
};
template <class TT> class Color4b: public edge::Color<vcg::Color4b, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Color4b"));TT::Name(name);}
};
/*-------------------------- Quality ----------------------------------*/
/*! \brief \em Component: Per edge \b quality
*
* The Quality Component is a generic place for storing a float. The term 'quality' is a bit misleading and it is due to its original storic meaning. You should intend it as a general purpose container.
* \sa vcg::tri::UpdateColor for methods transforming quality into colors
* \sa vcg::tri::UpdateQuality for methods to manage it
*/
template <class A, class TT> class Quality: public TT {
public:
typedef A QualityType;
QualityType &Q() { return _quality; }
const QualityType & cQ() const {return _quality; }
template < class LeftV>
void ImportData(const LeftV & left ) { Q() = left.cQ(); TT::ImportData( left); }
static bool HasQuality() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("Quality"));TT::Name(name);}
private:
QualityType _quality;
};
template <class TT> class Qualitys: public Quality<short, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualitys"));TT::Name(name);}
};
template <class TT> class Qualityf: public Quality<float, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityf"));TT::Name(name);}
};
template <class TT> class Qualityd: public Quality<double, TT> {
public: static void Name(std::vector<std::string> & name){name.push_back(std::string("Qualityd"));TT::Name(name);}
};
/*----------------------------- VEADJ ------------------------------*/
/*! \brief \em Component: Per vertex \b Vertex-Edge adjacency relation companion component
This component implement one element of the list of edges incident on a vertex.
You must use this component only toghether with the corresponding \ref vcg::vertex::VEAdj component in the vertex type
\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa iterators
*/
template <class T> class VEAdj: public T {
public:
VEAdj(){_ep[0]=0;_ep[1]=0;_zp[0]=-1;_zp[1]=-1;}
typename T::EdgePointer &VEp(const int & i) {return _ep[i]; }
typename T::EdgePointer cVEp(const int & i) const {return _ep[i]; }
int &VEi(const int & i){ return _zp[i];}
int cVEi(const int &i )const {return _zp[i];}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasVEAdjacency() { return true; }
static bool HasVEAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("VEAdj"));T::Name(name);}
private:
typename T::EdgePointer _ep[2] ;
int _zp[2] ;
};
/*----------------------------- EEADJ ------------------------------*/
/*! \brief \em Component: \b Edge-Edge adjacency relation
This component implement store the pointer (and index) of the adjacent edges.
If the vertex is 1-manifold (as in a classical polyline)
it holds that:
\code
e->EEp(i)->EEp(e->EEi(i)) == e
\endcode
otherwise the edges are connected in a unordered chain (quite similar to how Face-Face adjacency relation is stored);
\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa iterators
*/
template <class T> class EEAdj: public T {
public:
EEAdj(){_ep[0]=0;_ep[1]=0;_zp[0]=-1;_zp[1]=-1;}
typename T::EdgePointer &EEp(const int & i) {return _ep[i]; }
typename T::EdgePointer cEEp(const int & i) const {return _ep[i]; }
int &EEi(const int & i){ return _zp[i];}
int cEEi(const int &i )const {return _zp[i];}
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasEEAdjacency() { return true; }
static bool HasEEAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EEAdj"));T::Name(name);}
private:
typename T::EdgePointer _ep[2] ;
int _zp[2] ;
};
/*----------------------------- EHADJ ------------------------------*/
template <class T> class EHAdj: public T {
public:
EHAdj(){_hp=0;}
typename T::HEdgePointer &EHp( ) {return _hp ; }
const typename T::HEdgePointer cEHp( ) const {return _hp ; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasEHAdjacency() { return true; }
static bool HasEHAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EHAdj"));T::Name(name);}
private:
typename T::HEdgePointer _hp ;
};
/*----------------------------- EFADJ ------------------------------*/
/*! \brief \em Component: \b Edge-Face adjacency relation
This component implement store the pointer to a face sharing this edge.
\sa vcg::tri::UpdateTopology for functions that compute this relation
\sa iterators
*/
template <class T> class EFAdj: public T {
public:
EFAdj(){_fp=0;}
typename T::FacePointer &EFp() {return _fp; }
typename T::FacePointer cEFp() const {return _fp; }
int &EFi() {return _zp; }
int cEFi() const {return _zp; }
template < class LeftV>
void ImportData(const LeftV & left ) { T::ImportData( left); }
static bool HasEFAdjacency() { return true; }
static bool HasEFAdjacencyOcc() { return true; }
static void Name(std::vector<std::string> & name){name.push_back(std::string("EFAdj"));T::Name(name);}
private:
typename T::FacePointer _fp ;
int _zp ;
};
/** @} */ // End Doxygen EdgeComponentGroup
} // end namespace edge
}// end namespace vcg
#endif