523 lines
18 KiB
C++
523 lines
18 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004-2016 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
|
|
/** class Shot
|
|
|
|
Shot is made of two elements:
|
|
|
|
* the Instrinsics paramaters, which are stored as a Camera type (see vcg/math/camera) and that
|
|
determines how a point in the frame of the camera is projected in the 2D projection plane
|
|
|
|
* the Extrinsics parameters, which are stored in the class Shot (type ReferenceFrame)
|
|
and that describe viewpoint and view direction.
|
|
|
|
Some important notes about the usage of this class:
|
|
|
|
* The World coordinates system is assumed to be RIGHT-HANDED.
|
|
* The Shot reference frame is assumed to be RIGHT-HANDED.
|
|
* The associated Camera is assumed to point in the negative direction of the Z axis of the Shot coordinates system (reference frame).
|
|
As a consequence, the Camera coordinates system is LEFT-HANDED.
|
|
* The Extrinsics parameters are kept as a rotation matrix "rot" and a translation vector "tra"
|
|
The translation matrix "tra" corresponds to the viewpoint of the Shot while the rotation matrix
|
|
"rot" corresponds to the axis of the reference frame by row, i.e.
|
|
rot[0][0|1|2] == X axis
|
|
rot[1][0|1|2] == Y axis
|
|
rot[2][0|1|2] == Z axis
|
|
|
|
It follows that the matrix made with the upper left 3x3 equal to rot and the 4th colum equal to tra
|
|
and (0,0,0,1) in the bottom row transform a point from world coordiantes to the reference frame
|
|
of the shot.
|
|
|
|
|
|
|
|
**/
|
|
|
|
#ifndef __VCGLIB_SHOT
|
|
#define __VCGLIB_SHOT
|
|
|
|
#include <vcg/space/point2.h>
|
|
#include <vcg/space/point3.h>
|
|
#include <vcg/math/similarity.h>
|
|
#include <vcg/math/camera.h>
|
|
|
|
namespace vcg{
|
|
|
|
template <class S, class RotationType = Matrix44<S> >
|
|
class Shot {
|
|
public:
|
|
typedef Camera<S> CameraType;
|
|
typedef S ScalarType;
|
|
|
|
template <class ScalarType, class RotoType >
|
|
class ReferenceFrame {
|
|
friend class Shot<ScalarType, RotoType>;
|
|
RotoType rot; // rotation
|
|
Point3<S> tra; // viewpoint
|
|
public:
|
|
ReferenceFrame():rot(),tra(){}
|
|
|
|
void SetIdentity(){ rot.SetIdentity(); tra = Point3<S>(0.0,0.0,0.0);}
|
|
void SetTra(const Point3<S> & tr) {tra = tr;}
|
|
void SetRot(const RotoType & rt) {rot = rt;}
|
|
Point3<ScalarType> Tra() const { return tra;}
|
|
RotoType Rot() const { return rot;}
|
|
};
|
|
|
|
Camera<S> Intrinsics; // the camera that made the shot
|
|
ReferenceFrame<S,RotationType> Extrinsics; // the position and orientation of the camera
|
|
Shot(const Camera<S> &i, const ReferenceFrame<S,RotationType> &e)
|
|
:Intrinsics(),Extrinsics()
|
|
{
|
|
Intrinsics = i;
|
|
Extrinsics = e;
|
|
}
|
|
|
|
Shot(const Camera<S> &c)
|
|
:Intrinsics(),Extrinsics()
|
|
{
|
|
Intrinsics = c;
|
|
Extrinsics.SetIdentity();
|
|
}
|
|
|
|
Shot()
|
|
:Intrinsics(),Extrinsics()
|
|
{
|
|
Extrinsics.SetIdentity();
|
|
}
|
|
|
|
template <class Q>
|
|
static inline Shot Construct( const Shot<Q> & b )
|
|
{
|
|
ReferenceFrame<S,RotationType> r;
|
|
r.SetRot(Matrix44<S>::Construct(b.Extrinsics.Rot()));
|
|
r.SetTra(Point3<S>::Construct(b.Extrinsics.Tra()));
|
|
return Shot(Camera<S>::Construct(b.Intrinsics), r);
|
|
}
|
|
|
|
|
|
/// GET the i-th axis of the coordinate system of the camera
|
|
vcg::Point3<S> Axis(const int & i)const;
|
|
|
|
/// GET the viewdir
|
|
const vcg::Point3<S> GetViewDir()const;
|
|
/// GET the viewpoint
|
|
const vcg::Point3<S> GetViewPoint()const;
|
|
/// SET the viewpoint
|
|
void SetViewPoint(const vcg::Point3<S> & viewpoint);
|
|
|
|
/// GET fov from focal
|
|
float GetFovFromFocal() const;
|
|
|
|
/// look at (point+up)
|
|
void LookAt(const vcg::Point3<S> & point,const vcg::Point3<S> & up);
|
|
|
|
/// look at (opengl-like)
|
|
void LookAt(const S & eye_x,const S & eye_y,const S & eye_z,
|
|
const S & at_x,const S & at_y,const S & at_z,
|
|
const S & up_x,const S & up_y,const S & up_z);
|
|
|
|
/// look towards (dir+up)
|
|
void LookTowards(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up);
|
|
|
|
/* Sometimes the focal is given in pixels. In this case, this function can be used to convert it in millimiters
|
|
* given the CCD width (in mm). This method should be moved in vcg::Camera().
|
|
* Equivalent focal length is obtained by setting the ccd width to 35 mm.
|
|
*/
|
|
void ConvertFocalToMM(S ccdwidth);
|
|
|
|
/* Sometimes the 3D World coordinates are known up to a scale factor. This method adjust the camera/shot parameters
|
|
* to account for the re-scaling of the World. If the intrisic parameters are just reasonable values
|
|
* the cameras need only a re-positioning.
|
|
*/
|
|
void RescalingWorld(S scalefactor, bool adjustIntrinsics);
|
|
|
|
/// Given a pure roto-translation (4-by-4) modifies the reference frame accordingly.
|
|
void ApplyRigidTransformation(const Matrix44<S> & M);
|
|
|
|
/// Given a similarity transformation such that p' = s R p + T modifies the reference frame accordingly.
|
|
void ApplySimilarity( Matrix44<S> M);
|
|
|
|
/// Given a similarity transformation such that p' = s R p + T modifies the reference frame accordingly.
|
|
void ApplySimilarity(const Similarity<S> & Sim);
|
|
|
|
/// convert a 3d point from world to camera coordinates (do not confuse with the Shot reference frame)
|
|
vcg::Point3<S> ConvertWorldToCameraCoordinates(const vcg::Point3<S> & p) const;
|
|
|
|
/// convert a 3d point from camera (do not confuse with the Shot reference frame) to world coordinates
|
|
vcg::Point3<S> ConvertCameraToWorldCoordinates(const vcg::Point3<S> & p) const;
|
|
|
|
/* convert a 3d point from camera (do not confuse with the Shot reference frame) to world coordinates
|
|
* it uses inverse instead of transpose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
|
|
*/
|
|
vcg::Point3<S> ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3<S> & p) const;
|
|
|
|
/// project a 3d point from world coordinates to 2d camera viewport (the value returned is in pixels)
|
|
vcg::Point2<S> Project(const vcg::Point3<S> & p) const;
|
|
|
|
/// inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point)
|
|
vcg::Point3<S> UnProject(const vcg::Point2<S> & p, const S & d) const;
|
|
|
|
/* inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point)
|
|
* uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
|
|
*/
|
|
vcg::Point3<S> UnProject_Substitute(const vcg::Point2<S> & p, const S & d) const;
|
|
|
|
/// returns the distance of point p from camera plane (z depth), required for unprojection operation
|
|
S Depth(const vcg::Point3<S> & p)const;
|
|
|
|
|
|
// accessors
|
|
public:
|
|
|
|
/// Returns the (4-by-4) matrix M such that 3dpoint_in_world_coordinates = M * 3dpoint_in_local_coordinates
|
|
Matrix44<S> GetExtrinsicsToWorldMatrix() const
|
|
{
|
|
Matrix44<S> rotM;
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
return Matrix44<S>().SetTranslate(Extrinsics.tra) * rotM.transpose();
|
|
}
|
|
|
|
/// Returns the (4-by-4) matrix M such that 3dpoint_in_local_coordinates = M * 3dpoint_in_world_coordinates
|
|
Matrix44<S> GetWorldToExtrinsicsMatrix() const
|
|
{
|
|
Matrix44<S> rotM;
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
return rotM * Matrix44<S>().SetTranslate(-Extrinsics.tra) ;
|
|
}
|
|
|
|
/* multiply the current reference frame for the matrix passed
|
|
note: it is up to the caller to check the the matrix passed is a pure rototranslation
|
|
*/
|
|
void MultMatrix( vcg::Matrix44<S> m44)
|
|
{
|
|
Extrinsics.tra = m44 * Extrinsics.tra;
|
|
m44[0][3] = m44[1][3] = m44[2][3] = 0.0; //set no translation
|
|
const S k = m44.GetRow3(0).Norm(); //compute scaling (assumed uniform)
|
|
Extrinsics.rot = Extrinsics.rot * m44.transpose() * (1/k);
|
|
}
|
|
|
|
/* multiply the current reference frame for the similarity passed
|
|
note: it is up to the caller to check the the matrix passed is a pure rototranslation
|
|
*/
|
|
void MultSimilarity( const Similarity<S> & s){ MultMatrix(s.Matrix());}
|
|
|
|
bool IsValid() const
|
|
{
|
|
return Intrinsics.PixelSizeMm[0]>0 && Intrinsics.PixelSizeMm[1]>0;
|
|
}
|
|
|
|
}; // end class definition
|
|
|
|
|
|
|
|
template <class S, class RotationType>
|
|
const vcg::Point3<S> Shot<S,RotationType>::GetViewDir() const
|
|
{
|
|
return Extrinsics.Rot().GetRow3(2);
|
|
}
|
|
|
|
|
|
|
|
//---
|
|
/// GET the viewpoint
|
|
template <class S, class RotationType>
|
|
const vcg::Point3<S> Shot<S,RotationType>::GetViewPoint() const
|
|
{
|
|
return Extrinsics.tra;
|
|
}
|
|
/// SET the viewpoint
|
|
template <class S, class RotationType>
|
|
void Shot<S,RotationType>::SetViewPoint(const vcg::Point3<S> & viewpoint)
|
|
{
|
|
Extrinsics.SetTra( viewpoint );
|
|
}
|
|
//---
|
|
|
|
/// GET fov from focal
|
|
template <class S, class RotationType>
|
|
float Shot<S,RotationType>::GetFovFromFocal() const
|
|
{
|
|
double viewportYMm= Intrinsics.PixelSizeMm[1]* Intrinsics.ViewportPx[1];
|
|
return 2*(vcg::math::ToDeg(atanf(viewportYMm/(2*Intrinsics.FocalMm))));
|
|
}
|
|
|
|
//---
|
|
|
|
/// GET the i-th axis of the coordinate system of the camera
|
|
template <class S, class RotationType>
|
|
vcg::Point3<S> Shot<S,RotationType>::Axis(const int & i) const
|
|
{
|
|
vcg::Matrix44<S> m;
|
|
Extrinsics.rot.ToMatrix(m);
|
|
vcg::Point3<S> aa = m.GetRow3(i);
|
|
return aa;
|
|
}
|
|
|
|
/// look at (point+up)
|
|
template <class S, class RotationType>
|
|
void Shot<S,RotationType>::LookAt(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up)
|
|
{
|
|
LookTowards(z_dir-GetViewPoint(),up);
|
|
}
|
|
|
|
/// look at (opengl-like)
|
|
template <class S, class RotationType>
|
|
void Shot<S,RotationType>::LookAt(const S & eye_x, const S & eye_y, const S & eye_z,
|
|
const S & at_x, const S & at_y, const S & at_z,
|
|
const S & up_x,const S & up_y,const S & up_z)
|
|
{
|
|
SetViewPoint(Point3<S>(eye_x,eye_y,eye_z));
|
|
LookAt(Point3<S>(at_x,at_y,at_z),Point3<S>(up_x,up_y,up_z));
|
|
}
|
|
|
|
/// look towards
|
|
template <class S, class RotationType>
|
|
void Shot<S,RotationType>::LookTowards(const vcg::Point3<S> & z_dir,const vcg::Point3<S> & up)
|
|
{
|
|
vcg::Point3<S> x_dir = up ^-z_dir;
|
|
vcg::Point3<S> y_dir = -z_dir ^x_dir;
|
|
|
|
Matrix44<S> m;
|
|
m.SetIdentity();
|
|
*(vcg::Point3<S> *)&m[0][0] = x_dir/x_dir.Norm();
|
|
*(vcg::Point3<S> *)&m[1][0] = y_dir/y_dir.Norm();
|
|
*(vcg::Point3<S> *)&m[2][0] = -z_dir/z_dir.Norm();
|
|
|
|
Extrinsics.rot.FromMatrix(m);
|
|
}
|
|
|
|
//--- Space transformation methods
|
|
|
|
/// convert a 3d point from world to camera coordinates (do not confuse with the Shot reference frame)
|
|
template <class S, class RotationType>
|
|
vcg::Point3<S> Shot<S,RotationType>::ConvertWorldToCameraCoordinates(const vcg::Point3<S> & p) const
|
|
{
|
|
Matrix44<S> rotM;
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
vcg::Point3<S> cp = rotM * (p - GetViewPoint() );
|
|
cp[2]=-cp[2];
|
|
return cp;
|
|
}
|
|
|
|
/// convert a 3d point from camera coordinates (do not confuse with the Shot reference frame) to world coordinates
|
|
template <class S, class RotationType>
|
|
vcg::Point3<S> Shot<S,RotationType>::ConvertCameraToWorldCoordinates(const vcg::Point3<S> & p) const
|
|
{
|
|
Matrix44<S> rotM;
|
|
vcg::Point3<S> cp = p;
|
|
cp[2]=-cp[2];
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
cp = rotM.transpose() * cp + GetViewPoint();
|
|
return cp;
|
|
}
|
|
|
|
/// convert a 3d point from camera to world coordinates, uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
|
|
template <class S, class RotationType>
|
|
vcg::Point3<S> Shot<S,RotationType>::ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3<S> & p) const
|
|
{
|
|
Matrix44<S> rotM;
|
|
vcg::Point3<S> cp = p;
|
|
cp[2]=-cp[2];
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
cp = Inverse(rotM) * cp + GetViewPoint();
|
|
return cp;
|
|
}
|
|
|
|
/// project a 3d point from world coordinates to 2d camera viewport (the value returned is in pixel)
|
|
template <class S, class RotationType>
|
|
vcg::Point2<S> Shot<S,RotationType>::Project(const vcg::Point3<S> & p) const
|
|
{
|
|
Point3<S> cp = ConvertWorldToCameraCoordinates(p);
|
|
Point2<S> pp = Intrinsics.Project(cp);
|
|
Point2<S> vp = Intrinsics.LocalToViewportPx(pp);
|
|
return vp;
|
|
}
|
|
|
|
/// inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the point to unproject)
|
|
template <class S, class RotationType>
|
|
vcg::Point3<S> Shot<S,RotationType>::UnProject(const vcg::Point2<S> & p, const S & d) const
|
|
{
|
|
Point2<S> lp = Intrinsics.ViewportPxToLocal(p);
|
|
Point3<S> cp = Intrinsics.UnProject(lp,d);
|
|
Point3<S> wp = ConvertCameraToWorldCoordinates(cp);
|
|
return wp;
|
|
}
|
|
|
|
/* inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point)
|
|
* uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia)
|
|
*/
|
|
template <class S, class RotationType>
|
|
vcg::Point3<S> Shot<S,RotationType>::UnProject_Substitute(const vcg::Point2<S> & p, const S & d) const
|
|
{
|
|
Point2<S> lp = Intrinsics.ViewportPxToLocal(p);
|
|
Point3<S> cp = Intrinsics.UnProject(lp,d);
|
|
Point3<S> wp = ConvertCameraToWorldCoordinates_Substitute(cp);
|
|
return wp;
|
|
}
|
|
|
|
/// returns the distance of point p from camera plane (z depth), required for unprojection operation
|
|
template <class S, class RotationType>
|
|
S Shot<S,RotationType>::Depth(const vcg::Point3<S> & p)const
|
|
{
|
|
return ConvertWorldToCameraCoordinates(p).Z();
|
|
}
|
|
|
|
/* Sometimes the focal is given in pixels. In this case, this function can be used to convert it in millimiters
|
|
* given the CCD width (in mm). This method should be moved in vcg::Camera().
|
|
* Equivalent focal length is obtained by setting the ccd width to 35 mm.
|
|
*/
|
|
template <class S, class RotationType>
|
|
void Shot<S, RotationType>::ConvertFocalToMM(S ccdwidth)
|
|
{
|
|
double ccd_width = ccdwidth; // ccd is assumed conventionally to be 35mm
|
|
double ccd_height = (ccd_width * Intrinsics.ViewportPx[1]) / Intrinsics.ViewportPx[0];
|
|
Intrinsics.PixelSizeMm[0] = (ccd_width / Intrinsics.ViewportPx[0]);
|
|
Intrinsics.PixelSizeMm[1] = (ccd_height / Intrinsics.ViewportPx[1]);
|
|
Intrinsics.FocalMm = (ccd_width * Intrinsics.FocalMm) / Intrinsics.ViewportPx[0]; // NOW FOCAL IS IN MM
|
|
}
|
|
|
|
/* Sometimes the 3D World coordinates are known up to a scale factor. This method adjust the camera/shot parameters
|
|
* to account for the re-scaling of the World. If the intrisic parameters are just reasonable values
|
|
* the cameras need only a re-positioning.
|
|
*/
|
|
template <class S, class RotationType>
|
|
void Shot<S, RotationType>::RescalingWorld(S scalefactor, bool adjustIntrinsics)
|
|
{
|
|
// adjust INTRINSICS (if required)
|
|
|
|
if (adjustIntrinsics)
|
|
{
|
|
Intrinsics.FocalMm = Intrinsics.FocalMm * scalefactor;
|
|
double ccdwidth = static_cast<double>(Intrinsics.ViewportPx[0] * Intrinsics.PixelSizeMm[0]);
|
|
double ccdheight = static_cast<double>(Intrinsics.ViewportPx[1] * Intrinsics.PixelSizeMm[1]);
|
|
|
|
Intrinsics.PixelSizeMm[0] = (ccdwidth * scalefactor) / Intrinsics.ViewportPx[0];
|
|
Intrinsics.PixelSizeMm[1] = (ccdheight * scalefactor) / Intrinsics.ViewportPx[1];
|
|
}
|
|
|
|
// adjust EXTRINSICS
|
|
|
|
// rotation remains the same (!)
|
|
// nothing to do..
|
|
|
|
// the viewpoint should be modified according to the scale factor
|
|
Extrinsics.tra *= scalefactor;
|
|
}
|
|
|
|
/// Given a pure roto-translation matrix (4-by-4) modify the reference frame accordingly.
|
|
template <class S, class RotationType>
|
|
void Shot<S, RotationType>::ApplyRigidTransformation(const Matrix44<S> & M)
|
|
{
|
|
Matrix44<S> rotM;
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
// roto-translate the viewpoint
|
|
Extrinsics.tra = M * Extrinsics.tra;
|
|
Matrix44<S> newRot = rotM * M.transpose();
|
|
newRot[3][0] = newRot[3][1] = newRot[3][2] = 0.0;
|
|
|
|
Extrinsics.SetRot(newRot);
|
|
}
|
|
|
|
/// Given a similarity transformation modifies the reference frame accordingly.
|
|
template <class S, class RotationType>
|
|
void Shot<S, RotationType>::ApplySimilarity( Matrix44<S> M)
|
|
{
|
|
Matrix44<S> rotM;
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
|
|
// normalize
|
|
M = M * (1/M.ElementAt(3,3));
|
|
M[3][3] = 1; // just for numeric precision
|
|
|
|
// compute scale factor
|
|
ScalarType scalefactor = 1.0 / pow(ScalarType(M.Determinant()),1/ScalarType(3.0));
|
|
|
|
// roto-translate the viewpoint
|
|
Extrinsics.tra = M * Extrinsics.tra;
|
|
|
|
vcg::Matrix44<S> M2 = M;
|
|
|
|
M2 = M2 * scalefactor; // remove the scaling
|
|
M2[3][3] = 1.0;
|
|
M2[0][3] = M2[1][3] = M2[2][3] = 0; // remove the translation
|
|
|
|
rotM = rotM * M2.transpose();
|
|
Extrinsics.SetRot(rotM);
|
|
}
|
|
|
|
/// Given a similarity transformation modifies the reference frame accordingly.
|
|
template <class S, class RotationType>
|
|
void Shot<S, RotationType>::ApplySimilarity(const Similarity<S> & Sm)
|
|
{
|
|
Matrix44<S> rotM;
|
|
Extrinsics.rot.ToMatrix(rotM);
|
|
|
|
// similarity decomposition
|
|
vcg::Matrix44<S> R;
|
|
Sm.rot.ToMatrix(R);
|
|
vcg::Matrix44<S> T;
|
|
T.SetIdentity();
|
|
T.ElementAt(0,3) = Sm.tra[0];
|
|
T.ElementAt(1,3) = Sm.tra[1];
|
|
T.ElementAt(2,3) = Sm.tra[2];
|
|
vcg::Matrix44d S44;
|
|
S44.SetIdentity();
|
|
S44 *= Sm.sca;
|
|
S44.ElementAt(3,3) = 1.0;
|
|
|
|
vcg::Matrix44<S> M = T * R * S44;
|
|
|
|
// roto-translate the viewpoint
|
|
Extrinsics.tra = M * Extrinsics.tra;
|
|
|
|
vcg::Matrix44<S> M2 = M;
|
|
|
|
M2 = M2 * (1.0 / Sm.sca);
|
|
|
|
Extrinsics.rot = rotM * M2.transpose();
|
|
|
|
Extrinsics.rot.ElementAt(3,0) = 0;
|
|
Extrinsics.rot.ElementAt(3,1) = 0;
|
|
Extrinsics.rot.ElementAt(3,2) = 0;
|
|
Extrinsics.rot.ElementAt(3,3) = 1;
|
|
|
|
}
|
|
|
|
|
|
//--------------------------------
|
|
|
|
|
|
//--- utility definitions
|
|
typedef Shot<float> Shotf;
|
|
typedef Shot<double> Shotd;
|
|
//-----------------------
|
|
|
|
} // end name space
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|