vcglib/vcg/simplex/face/topology.h

267 lines
6.7 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
****************************************************************************/
#ifndef _VCG_FACE_TOPOLOGY
#define _VCG_FACE_TOPOLOGY
namespace vcg {
namespace face {
/** \addtogroup face */
/*@{*/
/** Return a boolean that indicate if the face is complex.
@param j Index of the edge
@return true se la faccia e' manifold, false altrimenti
*/
template <class FaceType>
inline bool IsManifold( FaceType const & f, const int j )
{
if(FaceType::HasFFAdjacency())
return ( f.F(j) == &f || &f == f.F(j)->F(f.Z(j)) );
else
return true;
}
/** Return a boolean that indicate if the j-th edge of the face is a border.
@param j Index of the edge
@return true if j is an edge of border, false otherwise
*/
template <class FaceType>
inline bool IsBorder(FaceType const & f, const int j )
{
if(FaceType::HasFFAdjacency())
return f.F(j) == &f ;
else
return true;
}
/// Count border edges of the face
template <class FaceType>
inline int BorderCount(FaceType const & f)
{
if(FaceType::HasFFAdjacency())
{
int t = 0;
if( f.IsBorder(0) ) ++t;
if( f.IsBorder(1) ) ++t;
if( f.IsBorder(2) ) ++t;
return t;
}
else return 3;
}
/// Counts the number of incident faces in a complex edge
template <class FaceType>
inline int ComplexSize(FaceType const & f, const int e)
{
if(FaceType::HasFFAdjacency())
{
int cnt=0;
FACE_TYPE *fi=(FACE_TYPE *)this;
int nzi,zi=e;
do
{
nzi=fi->Z(zi);
fi=fi->F(zi);
zi=nzi;
++cnt;
}
while(fi!=this);
return cnt;
}
assert(0);
return 2;
}
/*Funzione di detach che scollega una faccia da un ciclo
(eventualmente costituito da due soli elementi) incidente su un edge*/
/** This function detach the face from the adjacent face via the edge e. It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param e Index of the edge
*/
template <class FaceType>
void Detach(FaceType & f, const int e)
{
typedef FEdgePosB< FACE_TYPE > ETYPE;
assert(!IsBorder(e));
ETYPE EPB(this,e); // la faccia dall'altra parte
EPB.NextF();
int cnt=0;
while ( EPB.f->F(EPB.z) != this)
{
assert(!IsManifold(e)); // Si entra in questo loop solo se siamo in una situazione non manifold.
assert(!EPB.f->IsBorder(EPB.z));
EPB.NextF();
cnt++;
}
assert(EPB.f->F(EPB.z)==this);
EPB.f->F(EPB.z) = F(e);
EPB.f->Z(EPB.z) = Z(e);
F(e) = this;
Z(e) = e;
EPB.f->SetM();
this->SetM();
}
/** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation.
The function cannot be applicated if the adjacencies among faces aren't define.
@param z1 Index of the edge
@param f2 Pointer to the face
@param z2 The edge of the face f2
*/
template <class FaceType>
void Attach(int z1, FaceType *&f2, int z2)
{
typedef FEdgePosB< FACE_TYPE > ETYPE;
ETYPE EPB(f2,z2);
ETYPE TEPB;
TEPB = EPB;
EPB.NextF();
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
{
TEPB = EPB;
EPB.NextF();
}
//Salvo i dati di f1 prima di sovrascrivere
face_base *f1prec = this->F(z1);
int z1prec = this->Z(z1);
//Aggiorno f1
this->F(z1) = TEPB.f->F(TEPB.z);
this->Z(z1) = TEPB.f->Z(TEPB.z);
//Aggiorno la faccia che precede f2
TEPB.f->F(TEPB.z) = f1prec;
TEPB.f->Z(TEPB.z) = z1prec;
}
template <class FaceType>
void AssertAdj()
{
assert(F(0)->F(Z(0))==this);
assert(F(1)->F(Z(1))==this);
assert(F(2)->F(Z(2))==this);
assert(F(0)->Z(Z(0))==0);
assert(F(1)->Z(Z(1))==1);
assert(F(2)->Z(Z(2))==2);
}
// Funzione di supporto usata da swap?
//template <class FaceType>
//inline void Nexts( *&f, int &z )
//{
// int t;
// t = z;
// z = (*f).Z(z);
// f = (*f).F(t);
//}
/** This function change the orientation of the face. Inverting the index of two vertex
@param z Index of the edge
*/
template <class SwapFaceType>
void Swap (SwapFaceType &f, const int z )
{
int i;
face_base *tmp, *prec;
int t, precz;
swap ( f.V((z )%3),f.V((z+1)%3));
if(f.HasFFAdjacency() )
{
swap ( f.F((z+1)%3),f.F((z+2)%3));
swap ( f.Z((z+1)%3),f.Z((z+2)%3));
for(i = 1; i < 3; i++)
{
tmp = this;
t = (z+i)%3;
do {
prec = tmp;
precz = t;
Nexts(tmp,t);
}
while (tmp != this);
(*prec).Z(precz) = (z+i)%3;
}
}
}
// Stacca la faccia corrente dalla catena di facce incidenti sul vertice z,
// NOTA funziona SOLO per la topologia VF!!!
// usata nelle classi di collapse
template <class FaceType>
void VFDetach(FaceType & f, int z)
{
if(f.V(z)->Fp()==this )
{
int fz = f.V(z)->Zp();
f.V(z)->Fp() = (face_from_vert_type *) f.F(fz);
f.V(z)->Zp() = f.Z(fz);
}
else
{
VEdgePosB<FACE_TYPE> x,y;
x.f = V(z)->Fp();
x.z = V(z)->Zp();
for(;;)
{
y = x;
x.NextF();
assert(x.f!=0);
if(x.f==this)
{
y.f->F(y.z) = f.F(z);
y.f->Z(y.z) = f.Z(z);
break;
}
}
}
}
/*@}*/
} // end namespace
} // end namespace
#endif