708 lines
20 KiB
C++
708 lines
20 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
|
|
****************************************************************************/
|
|
|
|
#ifndef VCGLIB_UPDATE_CURVATURE_FITTING
|
|
#define VCGLIB_UPDATE_CURVATURE_FITTING
|
|
|
|
#include <vcg/space/index/grid_static_ptr.h>
|
|
#include <vcg/simplex/face/topology.h>
|
|
#include <vcg/simplex/face/pos.h>
|
|
#include <vcg/simplex/face/jumping_pos.h>
|
|
#include <vcg/container/simple_temporary_data.h>
|
|
#include <vcg/complex/algorithms/update/normal.h>
|
|
#include <vcg/complex/algorithms/point_sampling.h>
|
|
#include <vcg/complex/algorithms/intersection.h>
|
|
#include <vcg/complex/algorithms/inertia.h>
|
|
#include <vcg/complex/algorithms/nring.h>
|
|
|
|
#include <eigenlib/Eigen/Core>
|
|
#include <eigenlib/Eigen/QR>
|
|
#include <eigenlib/Eigen/LU>
|
|
#include <eigenlib/Eigen/SVD>
|
|
#include <eigenlib/Eigen/Eigenvalues>
|
|
|
|
|
|
namespace vcg {
|
|
namespace tri {
|
|
|
|
/// \ingroup trimesh
|
|
|
|
/// \headerfile curvature_fitting.h vcg/complex/algorithms/update/curvature_fitting.h
|
|
|
|
/// \brief Computation of per-vertex directions and values of curvature.
|
|
/**
|
|
This class is used to compute the per-vertex directions and values of curvature using a quadric fitting method.
|
|
*/
|
|
|
|
template <class MeshType>
|
|
class UpdateCurvatureFitting
|
|
{
|
|
|
|
public:
|
|
typedef typename MeshType::FaceType FaceType;
|
|
typedef typename MeshType::FacePointer FacePointer;
|
|
typedef typename MeshType::FaceIterator FaceIterator;
|
|
typedef typename MeshType::VertexIterator VertexIterator;
|
|
typedef typename MeshType::VertContainer VertContainer;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::VertexPointer VertexPointer;
|
|
typedef typename MeshType::VertexPointer VertexTypeP;
|
|
typedef vcg::face::VFIterator<FaceType> VFIteratorType;
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename CoordType::ScalarType ScalarType;
|
|
|
|
class Quadric
|
|
{
|
|
public:
|
|
|
|
Quadric(double av, double bv, double cv, double dv, double ev)
|
|
{
|
|
a() = av;
|
|
b() = bv;
|
|
c() = cv;
|
|
d() = dv;
|
|
e() = ev;
|
|
}
|
|
|
|
double& a() { return data[0];}
|
|
double& b() { return data[1];}
|
|
double& c() { return data[2];}
|
|
double& d() { return data[3];}
|
|
double& e() { return data[4];}
|
|
|
|
double data[5];
|
|
|
|
double evaluate(double u, double v)
|
|
{
|
|
return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v;
|
|
}
|
|
|
|
double du(double u, double v)
|
|
{
|
|
return 2.0*a()*u + b()*v + d();
|
|
}
|
|
|
|
double dv(double u, double v)
|
|
{
|
|
return 2.0*c()*v + b()*u + e();
|
|
}
|
|
|
|
double duv(double /*u*/, double /*v*/)
|
|
{
|
|
return b();
|
|
}
|
|
|
|
double duu(double /*u*/, double /*v*/)
|
|
{
|
|
return 2.0*a();
|
|
}
|
|
|
|
double dvv(double /*u*/, double /*v*/)
|
|
{
|
|
return 2.0*c();
|
|
}
|
|
|
|
static Quadric fit(std::vector<CoordType> VV)
|
|
{
|
|
assert(VV.size() >= 5);
|
|
Eigen::MatrixXf A(VV.size(),5);
|
|
Eigen::MatrixXf b(VV.size(),1);
|
|
Eigen::MatrixXf sol(VV.size(),1);
|
|
|
|
for(unsigned int c=0; c < VV.size(); ++c)
|
|
{
|
|
double u = VV[c].X();
|
|
double v = VV[c].Y();
|
|
double n = VV[c].Z();
|
|
|
|
A(c,0) = u*u;
|
|
A(c,1) = u*v;
|
|
A(c,2) = v*v;
|
|
A(c,3) = u;
|
|
A(c,4) = v;
|
|
|
|
b(c,0) = n;
|
|
}
|
|
|
|
sol = ((A.transpose()*A).inverse()*A.transpose())*b;
|
|
return Quadric(sol(0,0),sol(1,0),sol(2,0),sol(3,0),sol(4,0));
|
|
}
|
|
};
|
|
|
|
static CoordType project(VertexType* v, VertexType* vp)
|
|
{
|
|
return vp->P() - (v->N() * ((vp->P() - v->P()) * v->N()));
|
|
}
|
|
|
|
|
|
static std::vector<CoordType> computeReferenceFrames(VertexTypeP vi)
|
|
{
|
|
vcg::face::VFIterator<FaceType> vfi(vi);
|
|
|
|
int i = (vfi.I()+1)%3;
|
|
VertexTypeP vp = vfi.F()->V(i);
|
|
|
|
CoordType x = (project(&*vi,vp) - vi->P()).Normalize();
|
|
//assert(fabs(x * vi->N()) < 0.1);
|
|
|
|
std::vector<CoordType> res(3);
|
|
|
|
res[0] = x;
|
|
res[1] = (vi->N() ^ res[0]).Normalize();
|
|
res[2] = (vi->N())/(vi->N()).Norm();
|
|
|
|
return res;
|
|
}
|
|
|
|
static std::set<CoordType> getSecondRing(VertexTypeP v)
|
|
{
|
|
std::set<VertexTypeP> ris;
|
|
std::set<CoordType> coords;
|
|
|
|
vcg::face::VFIterator<FaceType> vvi(v);
|
|
for(;!vvi.End();++vvi)
|
|
{
|
|
vcg::face::VFIterator<FaceType> vvi2(vvi.F()->V((vvi.I()+1)%3));
|
|
for(;!vvi2.End();++vvi2)
|
|
{
|
|
ris.insert(vvi2.F()->V((vvi2.I()+1)%3));
|
|
}
|
|
}
|
|
typename std::set<VertexTypeP>::iterator it;
|
|
for(it = ris.begin(); it != ris.end(); ++it)
|
|
coords.insert((*it)->P());
|
|
|
|
return coords;
|
|
}
|
|
|
|
static Quadric fitQuadric(VertexTypeP v, std::vector<CoordType>& ref)
|
|
{
|
|
std::set<CoordType> ring = getSecondRing(v);
|
|
if (ring.size() < 5)
|
|
return Quadric(1,1,1,1,1);
|
|
std::vector<CoordType> points;
|
|
|
|
typename std::set<CoordType>::iterator b = ring.begin();
|
|
typename std::set<CoordType>::iterator e = ring.end();
|
|
|
|
while(b != e)
|
|
{
|
|
// vtang non e` il v tangente!!!
|
|
CoordType vTang = *b - v->P();
|
|
|
|
double x = vTang * ref[0];
|
|
double y = vTang * ref[1];
|
|
double z = vTang * ref[2];
|
|
points.push_back(CoordType(x,y,z));
|
|
++b;
|
|
}
|
|
return Quadric::fit(points);
|
|
}
|
|
|
|
|
|
static void computeCurvature(MeshType & m)
|
|
{
|
|
Allocator<MeshType>::CompactVertexVector(m);
|
|
|
|
if(!HasFVAdjacency(m)) throw vcg::MissingComponentException("FVAdjacency");
|
|
|
|
vcg::tri::UpdateTopology<MeshType>::VertexFace(m);
|
|
|
|
vcg::tri::UpdateNormal<MeshType>::PerVertexAngleWeighted(m);
|
|
vcg::tri::UpdateNormal<MeshType>::NormalizePerVertex(m);
|
|
|
|
|
|
VertexIterator vi;
|
|
for(vi = m.vert.begin(); vi!=m.vert.end(); ++vi )
|
|
{
|
|
std::vector<CoordType> ref = computeReferenceFrames(&*vi);
|
|
|
|
Quadric q = fitQuadric(&*vi,ref);
|
|
double a = q.a();
|
|
double b = q.b();
|
|
double c = q.c();
|
|
double d = q.d();
|
|
double e = q.e();
|
|
|
|
double E = 1.0 + d*d;
|
|
double F = d*e;
|
|
double G = 1.0 + e*e;
|
|
|
|
CoordType n = CoordType(-d,-e,1.0).Normalize();
|
|
|
|
vi->N() = ref[0] * n[0] + ref[1] * n[1] + ref[2] * n[2];
|
|
|
|
double L = 2.0 * a * n.Z();
|
|
double M = b * n.Z();
|
|
double N = 2 * c * n.Z();
|
|
|
|
// ----------------- Eigen stuff
|
|
Eigen::Matrix2d m;
|
|
m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F;
|
|
m = m / (E*G-F*F);
|
|
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(m);
|
|
|
|
Eigen::Vector2d c_val = eig.eigenvalues();
|
|
Eigen::Matrix2d c_vec = eig.eigenvectors();
|
|
|
|
c_val = -c_val;
|
|
|
|
CoordType v1, v2;
|
|
v1[0] = c_vec(0,0);
|
|
v1[1] = c_vec(0,1);
|
|
v1[2] = 0;
|
|
|
|
v2[0] = c_vec(1,0);
|
|
v2[1] = c_vec(1,1);
|
|
v2[2] = 0;
|
|
|
|
v1 = v1.Normalize();
|
|
v2 = v2.Normalize();
|
|
|
|
v1 = v1 * c_val[0];
|
|
v2 = v2 * c_val[1];
|
|
|
|
CoordType v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2];
|
|
CoordType v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2];
|
|
|
|
v1global.Normalize();
|
|
v2global.Normalize();
|
|
|
|
if (c_val[0] > c_val[1])
|
|
{
|
|
(*vi).PD1().Import(v1global);
|
|
(*vi).PD2().Import(v2global);
|
|
(*vi).K1() = c_val[0];
|
|
(*vi).K2() = c_val[1];
|
|
}
|
|
else
|
|
{
|
|
(*vi).PD1().Import(v2global);
|
|
(*vi).PD2().Import(v1global);
|
|
(*vi).K1() = c_val[1];
|
|
(*vi).K2() = c_val[0];
|
|
}
|
|
// ---- end Eigen stuff
|
|
}
|
|
}
|
|
|
|
// GG LOCAL CURVATURE
|
|
|
|
class QuadricLocal
|
|
{
|
|
public:
|
|
|
|
QuadricLocal ()
|
|
{
|
|
a() = b() = c() = d() = e() = 1.0;
|
|
}
|
|
|
|
QuadricLocal (double av, double bv, double cv, double dv, double ev)
|
|
{
|
|
a() = av;
|
|
b() = bv;
|
|
c() = cv;
|
|
d() = dv;
|
|
e() = ev;
|
|
}
|
|
|
|
double& a() { return data[0];}
|
|
double& b() { return data[1];}
|
|
double& c() { return data[2];}
|
|
double& d() { return data[3];}
|
|
double& e() { return data[4];}
|
|
|
|
double data[5];
|
|
|
|
double evaluate(double u, double v)
|
|
{
|
|
return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v;
|
|
}
|
|
|
|
double du(double u, double v)
|
|
{
|
|
return 2.0*a()*u + b()*v + d();
|
|
}
|
|
|
|
double dv(double u, double v)
|
|
{
|
|
return 2.0*c()*v + b()*u + e();
|
|
}
|
|
|
|
double duv(double /*u*/, double /*v*/)
|
|
{
|
|
return b();
|
|
}
|
|
|
|
double duu(double /*u*/, double /*v*/)
|
|
{
|
|
return 2.0*a();
|
|
}
|
|
|
|
double dvv(double /*u*/, double /*v*/)
|
|
{
|
|
return 2.0*c();
|
|
}
|
|
|
|
|
|
static QuadricLocal fit(std::vector<CoordType> &VV, bool svdRes, bool detCheck)
|
|
{
|
|
assert(VV.size() >= 5);
|
|
Eigen::MatrixXd A(VV.size(),5);
|
|
Eigen::MatrixXd b(VV.size(),1);
|
|
Eigen::MatrixXd sol(5,1);
|
|
|
|
for(unsigned int c=0; c < VV.size(); ++c)
|
|
{
|
|
double u = VV[c].X();
|
|
double v = VV[c].Y();
|
|
double n = VV[c].Z();
|
|
|
|
A(c,0) = u*u;
|
|
A(c,1) = u*v;
|
|
A(c,2) = v*v;
|
|
A(c,3) = u;
|
|
A(c,4) = v;
|
|
|
|
b[c] = n;
|
|
}
|
|
|
|
|
|
static int count = 0, index = 0;
|
|
double min = 0.000000000001; //1.0e-12
|
|
/*
|
|
if (!count)
|
|
printf("GNE %e\n", min);
|
|
*/
|
|
|
|
if (detCheck && ((A.transpose()*A).determinant() < min && (A.transpose()*A).determinant() > -min))
|
|
{
|
|
//A.svd().solve(b, &sol); A.svd().solve(b, &sol);
|
|
//cout << sol << endl;
|
|
printf("Quadric: unsolvable vertex %d %d\n", count, ++index);
|
|
//return Quadric (1, 1, 1, 1, 1);
|
|
// A.svd().solve(b, &sol);
|
|
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A);
|
|
sol=svd.solve(b);
|
|
return QuadricLocal(sol[0],sol[1],sol[2],sol[3],sol[4]);
|
|
}
|
|
count++;
|
|
|
|
//for (int i = 0; i < 100; i++)
|
|
{
|
|
if (svdRes)
|
|
{
|
|
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A);
|
|
sol=svd.solve(b);
|
|
//A.svd().solve(b, &sol);
|
|
}
|
|
else
|
|
sol = ((A.transpose()*A).inverse()*A.transpose())*b;
|
|
|
|
}
|
|
|
|
return QuadricLocal(sol[0],sol[1],sol[2],sol[3],sol[4]);
|
|
}
|
|
};
|
|
|
|
static void expandMaxLocal (MeshType & mesh, VertexType *v, int max, std::vector<VertexType*> *vv)
|
|
{
|
|
Nring<MeshType> rw = Nring<MeshType> (v, &mesh);
|
|
do rw.expand (); while (rw.allV.size() < max+1);
|
|
if (rw.allV[0] != v)
|
|
printf ("rw.allV[0] != *v\n");
|
|
vv->reserve ((size_t)max);
|
|
for (int i = 1; i < max+1; i++)
|
|
vv->push_back(rw.allV[i]);
|
|
|
|
rw.clear();
|
|
}
|
|
|
|
|
|
static void expandSphereLocal (MeshType & mesh, VertexType *v, float r, int min, std::vector<VertexType*> *vv)
|
|
{
|
|
Nring<MeshType> rw = Nring<MeshType> (v, &mesh);
|
|
|
|
bool isInside = true;
|
|
while (isInside)
|
|
{
|
|
rw.expand();
|
|
vv->reserve(rw.allV.size());
|
|
|
|
typename std::vector<VertexType*>::iterator b = rw.lastV.begin();
|
|
typename std::vector<VertexType*>::iterator e = rw.lastV.end();
|
|
isInside = false;
|
|
while(b != e)
|
|
{
|
|
if (((*b)->P() - v->P()).Norm() < r)
|
|
{
|
|
vv->push_back(*b);;
|
|
isInside = true;
|
|
}
|
|
++b;
|
|
}
|
|
}
|
|
//printf ("%d\n", vv->size());
|
|
rw.clear();
|
|
|
|
if (vv->size() < min)
|
|
{
|
|
vv->clear();
|
|
expandMaxLocal (mesh, v, min, vv);
|
|
}
|
|
}
|
|
|
|
|
|
static void getAverageNormal (VertexType *vp, std::vector<VertexType*> &vv, CoordType *ppn)
|
|
{
|
|
*ppn = CoordType (0,0,0);
|
|
for (typename std::vector<VertexType*>::iterator vpi = vv.begin(); vpi != vv.end(); ++vpi)
|
|
*ppn += (*vpi)->N();
|
|
*ppn += (*vp).N();
|
|
*ppn /= vv.size() + 1;
|
|
ppn->Normalize();
|
|
}
|
|
|
|
|
|
static void applyProjOnPlane (CoordType ppn, std::vector<VertexType*> &vin, std::vector<VertexType*> *vout)
|
|
{
|
|
for (typename std::vector<VertexType*>::iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
|
|
if ((*vpi)->N() * ppn > 0.0f)
|
|
vout->push_back (*vpi);
|
|
}
|
|
|
|
static CoordType projectLocal(VertexType* v, VertexType* vp, CoordType ppn)
|
|
{
|
|
return vp->P() - (ppn * ((vp->P() - v->P()) * ppn));
|
|
}
|
|
|
|
|
|
static void computeReferenceFramesLocal (VertexType *v, CoordType ppn, std::vector<CoordType> *ref)
|
|
{
|
|
vcg::face::VFIterator<FaceType> vfi (v);
|
|
|
|
int i = (vfi.I() + 1) % 3;
|
|
VertexTypeP vp = vfi.F()->V(i);
|
|
|
|
CoordType x = (projectLocal (v, vp, ppn) - v->P()).Normalize();
|
|
|
|
assert(fabs(x * ppn) < 0.1);
|
|
|
|
*ref = std::vector<CoordType>(3);
|
|
|
|
(*ref)[0] = x;
|
|
(*ref)[1] = (ppn ^ (*ref)[0]).Normalize();
|
|
(*ref)[2] = ppn.Normalize(); //ppn / ppn.Norm();
|
|
}
|
|
|
|
|
|
static void fitQuadricLocal (VertexType *v, std::vector<CoordType> ref, std::vector<VertexType*> &vv, QuadricLocal *q)
|
|
{
|
|
bool svdResolution = false;
|
|
bool zeroDeterminantCheck = false;
|
|
|
|
std::vector<CoordType> points;
|
|
points.reserve (vv.size());
|
|
|
|
typename std::vector<VertexType*>::iterator b = vv.begin();
|
|
typename std::vector<VertexType*>::iterator e = vv.end();
|
|
|
|
while(b != e)
|
|
{
|
|
CoordType cp = (*b)->P();
|
|
|
|
// vtang non e` il v tangente!!!
|
|
CoordType vTang = cp - v->P();
|
|
|
|
double x = vTang * ref[0];
|
|
double y = vTang * ref[1];
|
|
double z = vTang * ref[2];
|
|
points.push_back(CoordType(x,y,z));
|
|
++b;
|
|
}
|
|
|
|
*q = QuadricLocal::fit (points, svdResolution, zeroDeterminantCheck);
|
|
}
|
|
|
|
|
|
static void finalEigenStuff (VertexType *v, std::vector<CoordType> ref, QuadricLocal q)
|
|
{
|
|
double a = q.a();
|
|
double b = q.b();
|
|
double c = q.c();
|
|
double d = q.d();
|
|
double e = q.e();
|
|
|
|
double E = 1.0 + d*d;
|
|
double F = d*e;
|
|
double G = 1.0 + e*e;
|
|
|
|
CoordType n = CoordType(-d,-e,1.0).Normalize();
|
|
|
|
v->N() = ref[0] * n[0] + ref[1] * n[1] + ref[2] * n[2];
|
|
|
|
double L = 2.0 * a * n.Z();
|
|
double M = b * n.Z();
|
|
double N = 2 * c * n.Z();
|
|
|
|
// ----------------- Eigen stuff
|
|
Eigen::Matrix2d m;
|
|
m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F;
|
|
m = m / (E*G-F*F);
|
|
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(m);
|
|
|
|
Eigen::Vector2d c_val = eig.eigenvalues();
|
|
Eigen::Matrix2d c_vec = eig.eigenvectors();
|
|
|
|
c_val = -c_val;
|
|
|
|
CoordType v1, v2;
|
|
v1[0] = c_vec[0];
|
|
v1[1] = c_vec[1];
|
|
v1[2] = d * v1[0] + e * v1[1];
|
|
|
|
v2[0] = c_vec[2];
|
|
v2[1] = c_vec[3];
|
|
v2[2] = d * v2[0] + e * v2[1];
|
|
|
|
v1 = v1.Normalize();
|
|
v2 = v2.Normalize();
|
|
|
|
CoordType v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2];
|
|
CoordType v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2];
|
|
|
|
v1global.Normalize();
|
|
v2global.Normalize();
|
|
|
|
v1global *= c_val[0];
|
|
v2global *= c_val[1];
|
|
|
|
if (c_val[0] > c_val[1])
|
|
{
|
|
(*v).PD1() = v1global;
|
|
(*v).PD2() = v2global;
|
|
(*v).K1() = c_val[0];
|
|
(*v).K2() = c_val[1];
|
|
}
|
|
else
|
|
{
|
|
(*v).PD1() = v2global;
|
|
(*v).PD2() = v1global;
|
|
(*v).K1() = c_val[1];
|
|
(*v).K2() = c_val[0];
|
|
}
|
|
// ---- end Eigen stuff
|
|
}
|
|
|
|
|
|
|
|
static void updateCurvatureLocal (MeshType & mesh, float radiusSphere)
|
|
{
|
|
bool verbose = false;
|
|
bool projectionPlaneCheck = true;
|
|
int vertexesPerFit = 0;
|
|
|
|
int i = 0;
|
|
VertexIterator vi;
|
|
for(vi = mesh.vert.begin(); vi != mesh.vert.end(); ++vi, i++)
|
|
{
|
|
std::vector<VertexType*> vv;
|
|
std::vector<VertexType*> vvtmp;
|
|
|
|
int count;
|
|
if (verbose && !((count = (vi - mesh.vert.begin())) % 1000))
|
|
printf ("vertex %d of %d\n",count,mesh.vert.size());
|
|
|
|
// if (kRing != 0)
|
|
// expandRing (&*vi, kRing, 5, &vv);
|
|
// else
|
|
expandSphereLocal (mesh, &*vi, radiusSphere, 5, &vv);
|
|
|
|
assert (vv.size() >= 5);
|
|
|
|
CoordType ppn;
|
|
// if (averageNormalMode)
|
|
// //ppn = (*vi).N();
|
|
getAverageNormal (&*vi, vv, &ppn);
|
|
// else
|
|
// getProjPlaneNormal (&*vi, vv, &ppn);
|
|
|
|
if (projectionPlaneCheck)
|
|
{
|
|
vvtmp.reserve (vv.size ());
|
|
applyProjOnPlane (ppn, vv, &vvtmp);
|
|
if (vvtmp.size() >= 5)
|
|
vv = vvtmp;
|
|
}
|
|
|
|
vvtmp.clear();
|
|
|
|
// if (montecarloMaxVertexNum)
|
|
// {
|
|
// //printf ("P: %d\n", vv.size());
|
|
// vvtmp.reserve (vv.size ());
|
|
// //printf ("TP: %d\n", vvtmp.size());
|
|
// applyMontecarlo (montecarloMaxVertexNum, vv, &vvtmp);
|
|
// //printf ("TD: %d\n", vvtmp.size());
|
|
// vv = vvtmp;
|
|
// //printf ("D: %d\n", vv.size());
|
|
// //printf ("\n");
|
|
// }
|
|
|
|
assert (vv.size() >= 5);
|
|
|
|
std::vector<CoordType> ref;
|
|
computeReferenceFramesLocal (&*vi, ppn, &ref);
|
|
|
|
/*
|
|
printf ("%lf %lf %lf - %lf %lf %lf - %lf %lf %lf\n",
|
|
ref[0][0], ref[0][1], ref[0][2],
|
|
ref[1][0], ref[1][1], ref[1][2],
|
|
ref[2][0], ref[2][1], ref[2][2]);
|
|
*/
|
|
|
|
vertexesPerFit += vv.size();
|
|
//printf ("size: %d\n", vv.size());
|
|
|
|
QuadricLocal q;
|
|
fitQuadricLocal (&*vi, ref, vv, &q);
|
|
|
|
finalEigenStuff (&*vi, ref, q);
|
|
|
|
}
|
|
|
|
//if (verbose)
|
|
//printf ("average vertex num in each fit: %f, total %d, vn %d\n", ((float) vertexesPerFit) / mesh.vn, vertexesPerFit, mesh.vn);
|
|
if (verbose)
|
|
printf ("average vertex num in each fit: %f\n", ((float) vertexesPerFit) / mesh.vn);
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
}
|
|
#endif
|