317 lines
8.5 KiB
C++
317 lines
8.5 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
History
|
|
|
|
$Log: not supported by cvs2svn $
|
|
Revision 1.2 2004/05/10 14:40:47 ganovelli
|
|
name of adhacency function updated
|
|
|
|
Revision 1.1 2004/05/10 14:01:56 ganovelli
|
|
created
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
#ifndef __VCG_EDGE_POS
|
|
#define __VCG_EDGE_POS
|
|
|
|
namespace vcg {
|
|
namespace edge {
|
|
|
|
// Needed Prototypes (pos is include before topology)
|
|
template <class EDGETYPE>
|
|
bool IsEdgeBorder(EDGETYPE const & e, const int j );
|
|
template <class EDGETYPE>
|
|
bool IsEdgeManifold(EDGETYPE const & e, const int j );
|
|
|
|
/*
|
|
Vertex_Edge: run over the fan of a vertex (no order is specified)
|
|
*/
|
|
/** Class VertexStar
|
|
@param EDGETYPE Specifies the type of the faces
|
|
*/
|
|
template <class EDGETYPE>
|
|
class VertexStar
|
|
{
|
|
public:
|
|
/// Pointer to an edge
|
|
EDGETYPE *e;
|
|
/// Local index of the vertex
|
|
int z;
|
|
/// Default Constructor
|
|
VertexStar() : e(0), z(0) {}
|
|
/// Constructor which associates the EdgePos elementet with a face and its edge
|
|
VertexStar(EDGETYPE * const ep, int const zp)
|
|
{
|
|
e=ep;
|
|
z=zp;
|
|
}
|
|
|
|
/// Function to jump on the next face of the list of vertex z
|
|
void NextF()
|
|
{
|
|
EDGETYPE * t = e;
|
|
e = (EDGETYPE *)t->VEp(z);
|
|
z = t->VEi(z);
|
|
}
|
|
};
|
|
|
|
|
|
/*
|
|
|
|
*/
|
|
/** Class Pos.
|
|
This structure is equivalent to a half-edge.
|
|
@param MFTYPE (Template-Parameter) Specifies the type of the edges
|
|
*/
|
|
template <class EDGETYPE>
|
|
class Pos
|
|
{
|
|
public:
|
|
|
|
/// The vertex type
|
|
typedef typename EDGETYPE::VertexType VertexType;
|
|
/////The HEdgePos type
|
|
typedef Pos< EDGETYPE> POSTYPE;
|
|
///// The vector type
|
|
//typedef typename MVTYPE::coord_type vectorial_type;
|
|
///// The scalar type
|
|
//typedef typename MVTYPE::scalar_type scalar_type;
|
|
|
|
/// Pointer to the face of the half-edge
|
|
EDGETYPE *e;
|
|
/// Pointer to the vertex
|
|
VertexType *v;
|
|
|
|
/// Default constructor
|
|
Pos(){}
|
|
/// Constructor which associates the half-edge elementet with a face, its edge and its vertex
|
|
Pos(EDGETYPE * ep, int zp) {e=ep;v=ep->V(zp);}
|
|
Pos(EDGETYPE * ep, VertexType *vp){e=ep;v=vp;}
|
|
|
|
|
|
// Official Access functions functions
|
|
VertexType *& V(){ return v; }
|
|
EDGETYPE *& E(){ return e; }
|
|
int VInd(){
|
|
return (e->V(0)==v)?0:1;
|
|
}
|
|
|
|
/// Operator to compare two half-edge
|
|
inline bool operator == ( POSTYPE const & p ) const {
|
|
return (e==p.e &&v==p.v);
|
|
}
|
|
|
|
/// Operator to compare two half-edge
|
|
inline bool operator != ( POSTYPE const & p ) const {
|
|
return (e!=p.e || v!=p.v);
|
|
}
|
|
/// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers
|
|
inline bool operator <= ( POSTYPE const & p) const {
|
|
return (e!=p.e)?(e<p.e):
|
|
(v<=p.v);
|
|
}
|
|
|
|
/// Assignment operator
|
|
inline POSTYPE & operator = ( const POSTYPE & h ){
|
|
e=h.e;
|
|
v=h.v;
|
|
return *this;
|
|
}
|
|
/// Set to null the half-edge
|
|
void SetNull(){
|
|
e=0;
|
|
v=0;
|
|
}
|
|
/// Check if the half-edge is null
|
|
bool IsNull() const {
|
|
return e==0 || v==0 ;
|
|
}
|
|
|
|
|
|
/*! \brief It advances the current Pos along the edge chain.
|
|
*
|
|
* Note that a Pos implicitly encode an ordering in the chain:
|
|
* the one denoted by the classical arrow shaped icon of a pos.
|
|
* In other words
|
|
*
|
|
* o---------o
|
|
* | /
|
|
* |/
|
|
*
|
|
* Meaningful only for 1-manifold edge chain.
|
|
*/
|
|
|
|
void NextE()
|
|
{
|
|
FlipE();
|
|
FlipV();
|
|
}
|
|
|
|
// Paolo Cignoni 19/6/99
|
|
// Si muove sulla faccia adiacente a f, lungo uno spigolo che
|
|
// NON e' j, e che e' adiacente a v
|
|
// in questo modo si scandiscono tutte le facce incidenti in un
|
|
// vertice f facendo Next() finche' non si ritorna all'inizio
|
|
// Nota che sul bordo rimbalza, cioe' se lo spigolo !=j e' di bordo
|
|
// restituisce sempre la faccia f ma con nj che e' il nuovo spigolo di bordo
|
|
// vecchi parametri: MFTYPE * & f, MVTYPE * v, int & j
|
|
|
|
// Cambia edge mantenendo la stessa faccia e lo stesso vertice
|
|
/// Changes edge maintaining the same face and the same vertex
|
|
void FlipV()
|
|
{
|
|
v = (e->V(0)==v)?e->V(1):e->V(0);
|
|
}
|
|
void FlipE()
|
|
{
|
|
assert( (e->V(0)==v) ||(e->V(1)==v));
|
|
e = (e->V(0)==v)?e->EEp(0):e->EEp(1);
|
|
}
|
|
// return the vertex that it should have if we make FlipV;
|
|
VertexType *VFlip()
|
|
{
|
|
return (e->V(0)==v)?e->V(1):e->V(0);
|
|
}
|
|
|
|
// Trova il prossimo half-edge di bordo (nhe)
|
|
// tale che
|
|
// --nhe.f adiacente per vertice a he.f
|
|
// --nhe.v adiacente per edge di bordo a he.v
|
|
// l'idea e' che se he e' un half edge di bordo
|
|
// si puo scorrere tutto un bordo facendo
|
|
//
|
|
// hei=he;
|
|
// do
|
|
// hei.Nextb()
|
|
// while(hei!=he);
|
|
|
|
|
|
/// Checks if the half-edge is of border
|
|
bool IsBorder()
|
|
{
|
|
return edge::IsEdgeBorder(*e,VInd());
|
|
}
|
|
|
|
bool IsManifold()
|
|
{
|
|
return edge::IsEdgeManifold(*e,VInd());
|
|
}
|
|
|
|
|
|
/** Function to inizialize an half-edge.
|
|
@param fp Puntatore alla faccia
|
|
@param zp Indice dell'edge
|
|
@param vp Puntatore al vertice
|
|
*/
|
|
void Set(EDGETYPE * const ep, VertexType * const vp)
|
|
{
|
|
e=ep;v=vp;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/** Class VEIterator.
|
|
This class is used as an iterator over the VE adjacency.
|
|
It allow to easily traverse all the edges around a given vertex v;
|
|
The edges are traversed in no particular order. No Manifoldness requirement.
|
|
|
|
typical example:
|
|
|
|
VertexPointer v;
|
|
vcg::edge::VEIterator<EdgeType> vei(v);
|
|
for (;!vei.End();++vei)
|
|
vei.E()->ClearV();
|
|
|
|
// Alternative
|
|
|
|
vcg::edge::VEIterator<EdgeType> vei(f, 1);
|
|
while (!vei.End()){
|
|
vei.E()->ClearV();
|
|
++vei;
|
|
}
|
|
|
|
|
|
See also the JumpingPos in jumping_pos.h for an iterator that loops
|
|
around the faces of a vertex using FF topology and without requiring the VF topology.
|
|
|
|
*/
|
|
|
|
template <typename EdgeType>
|
|
class VEIterator
|
|
{
|
|
public:
|
|
|
|
/// The vertex type
|
|
typedef typename EdgeType::VertexType VertexType;
|
|
/// The Base face type
|
|
typedef EdgeType VFIEdgeType;
|
|
/// The vector type
|
|
typedef typename VertexType::CoordType CoordType;
|
|
/// The scalar type
|
|
typedef typename VertexType::ScalarType ScalarType;
|
|
|
|
/// Pointer to the face of the half-edge
|
|
EdgeType *e;
|
|
/// Index of the vertex
|
|
int z;
|
|
|
|
/// Default constructor
|
|
VEIterator(){}
|
|
/// Constructor which associates the half-edge elementet with a face and its vertex
|
|
VEIterator(EdgeType * _e, const int & _z){e = _e; z = _z;}
|
|
|
|
/// Constructor which takes a pointer to vertex
|
|
VEIterator(VertexType * _v){
|
|
e = _v->VEp(); z = _v->VEi();
|
|
assert(z>=0 && "VE adjacency not initialized");
|
|
}
|
|
|
|
VFIEdgeType * &E() { return e;}
|
|
int & I() { return z;}
|
|
|
|
// Access to the vertex. Having a VEIterator vfi, it corresponds to
|
|
// vfi.V() = vfi.I()->V(vfi.I())
|
|
inline VertexType *V() const { return e->V(z);}
|
|
|
|
inline VertexType * const & V0() const { return e->V0(z);}
|
|
inline VertexType * const & V1() const { return e->V1(z);}
|
|
|
|
bool End() const {return e==0;}
|
|
VFIEdgeType *operator++() {
|
|
EdgeType* t = e;
|
|
e = e->VEp(z);
|
|
z = t->VEi(z);
|
|
return e;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
} // end namespace
|
|
} // end namespace
|
|
#endif
|