vcglib/vcg/space/point3.h

438 lines
10 KiB
C++

/*#***************************************************************************
* VCGLib *
* *
* Visual Computing Group o> *
* IEI Institute, CNUCE Institute, CNR Pisa <| *
* / \ *
* Copyright(C) 1999 by Paolo Cignoni, Claudio Rocchini *
* All rights reserved. *
* *
* Permission to use, copy, modify, distribute and sell this software and *
* its documentation for any purpose is hereby granted without fee, provided *
* that the above copyright notice appear in all copies and that both that *
* copyright notice and this permission notice appear in supporting *
* documentation. the author makes no representations about the suitability *
* of this software for any purpose. It is provided "as is" without express *
* or implied warranty. *
* *
*****************************************************************************/
/*#**************************************************************************
History
$Id: point3.h,v 1.3 2004-02-06 02:25:54 cignoni Exp $
$Log: not supported by cvs2svn $
Revision 1.2 2004/02/06 02:17:09 cignoni
First commit...
****************************************************************************/
#ifndef __VCGLIB_POINT3
#define __VCGLIB_POINT3
//#include <limits>
#include <assert.h>
#include <vcg/math/base.h>
namespace vcg {
/** The class for representing a 3D point
* More details about this class.
*/
template <class T> class Point3
{
protected:
T _v[3];
public:
typedef T scalar;
// Costruttori & assegnatori
inline Point3 () { }
inline Point3 ( const T nx, const T ny, const T nz )
{
_v[0] = nx;
_v[1] = ny;
_v[2] = nz;
}
inline Point3 ( Point3 const & p )
{
_v[0]= p._v[0];
_v[1]= p._v[1];
_v[2]= p._v[2];
}
inline Point3 ( const T nv[3] )
{
_v[0] = nv[0];
_v[1] = nv[1];
_v[2] = nv[2];
}
inline Point3 & operator =( Point3 const & p )
{
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2];
return *this;
}
inline void zero()
{
_v[0] = 0;
_v[1] = 0;
_v[2] = 0;
}
// Accesso alle componenti
inline const T &x() const { return _v[0]; }
inline const T &y() const { return _v[1]; }
inline const T &z() const { return _v[2]; }
inline T &x() { return _v[0]; }
inline T &y() { return _v[1]; }
inline T &z() { return _v[2]; }
inline T & operator [] ( const int i )
{
assert(i>=0 && i<3);
return _v[i];
}
inline const T & operator [] ( const int i ) const
{
assert(i>=0 && i<3);
return _v[i];
}
inline const T * V() const
{
return _v;
}
inline T & V( const int i )
{
assert(i>=0 && i<3);
return _v[i];
}
inline const T & V( const int i ) const
{
assert(i>=0 && i<3);
return _v[i];
}
// Operatori matematici di base
inline Point3 operator + ( Point3 const & p) const
{
return Point3<T>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] );
}
inline Point3 operator - ( Point3 const & p) const
{
return Point3<T>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] );
}
inline Point3 operator * ( const T s ) const
{
return Point3<T>( _v[0]*s, _v[1]*s, _v[2]*s );
}
inline Point3 operator / ( const T s ) const
{
return Point3<T>( _v[0]/s, _v[1]/s, _v[2]/s );
}
// dot product
inline T operator * ( Point3 const & p ) const
{
return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] );
}
// Cross product
inline Point3 operator ^ ( Point3 const & p ) const
{
return Point3 <T>
(
_v[1]*p._v[2] - _v[2]*p._v[1],
_v[2]*p._v[0] - _v[0]*p._v[2],
_v[0]*p._v[1] - _v[1]*p._v[0]
);
}
inline Point3 & operator += ( Point3 const & p)
{
_v[0] += p._v[0];
_v[1] += p._v[1];
_v[2] += p._v[2];
return *this;
}
inline Point3 & operator -= ( Point3 const & p)
{
_v[0] -= p._v[0];
_v[1] -= p._v[1];
_v[2] -= p._v[2];
return *this;
}
inline Point3 & operator *= ( const T s )
{
_v[0] *= s;
_v[1] *= s;
_v[2] *= s;
return *this;
}
inline Point3 & operator /= ( const T s )
{
_v[0] /= s;
_v[1] /= s;
_v[2] /= s;
return *this;
}
// Norme
inline T Norm() const
{
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
}
inline T SquaredNorm() const
{
return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
}
// Scalatura differenziata
inline Point3 & Scale( const T sx, const T sy, const T sz )
{
_v[0] *= sx;
_v[1] *= sy;
_v[2] *= sz;
return *this;
}
inline Point3 & Scale( const Point3 & p )
{
_v[0] *= p._v[0];
_v[1] *= p._v[1];
_v[2] *= p._v[2];
return *this;
}
// Normalizzazione
inline Point3 & Normalize()
{
T n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]);
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; }
return *this;
}
// Polarizzazione
void Polar( T & ro, T & tetha, T & fi ) const
{
ro = Norm();
tetha = (T)atan2( _v[1], _v[0] );
fi = (T)acos( _v[2]/ro );
}
// Operatori di confronto (ordinamento lessicografico)
inline bool operator == ( Point3 const & p ) const
{
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2];
}
inline bool operator != ( Point3 const & p ) const
{
return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2];
}
inline bool operator < ( Point3 const & p ) const
{
return (_v[2]!=p._v[2])?(_v[2]<p._v[2]):
(_v[1]!=p._v[1])?(_v[1]<p._v[1]):
(_v[0]<p._v[0]);
}
inline bool operator > ( Point3 const & p ) const
{
return (_v[2]!=p._v[2])?(_v[2]>p._v[2]):
(_v[1]!=p._v[1])?(_v[1]>p._v[1]):
(_v[0]>p._v[0]);
}
inline bool operator <= ( Point3 const & p ) const
{
return (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
(_v[1]!=p._v[1])?(_v[1]< p._v[1]):
(_v[0]<=p._v[0]);
}
inline bool operator >= ( Point3 const & p ) const
{
return (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
(_v[1]!=p._v[1])?(_v[1]> p._v[1]):
(_v[0]>=p._v[0]);
}
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
/// paddando gli elementi estesi con zeri
inline T Ext( const int i ) const
{
if(i>=0 && i<=2) return _v[i];
else return 0;
}
template <class Q>
inline void Import( const Point3<Q> & b )
{
_v[0] = T(b[0]);
_v[1] = T(b[1]);
_v[2] = T(b[2]);
}
inline Point3 operator - () const
{
return Point3<T> ( -_v[0], -_v[1], -_v[2] );
}
// Casts
#ifdef __VCG_USE_CAST
inline operator Point3<int> (){ return Point3<int> (_v[0],_v[1],_v[2]); }
inline operator Point3<unsigned int> (){ return Point3<unsigned int>(_v[0],_v[1],_v[2]); }
inline operator Point3<double> (){ return Point3<double> (_v[0],_v[1],_v[2]); }
inline operator Point3<float> (){ return Point3<float> (_v[0],_v[1],_v[2]); }
inline operator Point3<short> (){ return Point3<short> (_v[0],_v[1],_v[2]); }
#endif
}; // end class definition
template <class T>
inline T Angle( Point3<T> const & p1, Point3<T> const & p2 )
{
T w = p1.Norm()*p2.Norm();
if(w==0) return -1;
T t = (p1*p2)/w;
if(t>1) t = 1;
else if(t<-1) t = -1;
return (T) acos(t);
}
// versione uguale alla precedente ma che assume che i due vettori sono unitari
template <class T>
inline T AngleN( Point3<T> const & p1, Point3<T> const & p2 )
{
T w = p1*p2;
if(w>1)
w = 1;
else if(w<-1)
w=-1;
return (T) acos(w);
}
template <class T>
inline T Norm( Point3<T> const & p )
{
return p.Norm();
}
template <class T>
inline T SquaredNorm( Point3<T> const & p )
{
return p.SquaredNorm();
}
template <class T>
inline Point3<T> & Normalize( Point3<T> & p )
{
p.Normalize();
return p;
}
template <class T>
inline T Distance( Point3<T> const & p1,Point3<T> const & p2 )
{
return (p1-p2).Norm();
}
template <class T>
inline T SquaredDistance( Point3<T> const & p1,Point3<T> const & p2 )
{
return (p1-p2).SquaredNorm();
}
// Dot product preciso numericamente (solo double!!)
// Implementazione: si sommano i prodotti per ordine di esponente
// (prima le piu' grandi)
template<class T>
double stable_dot ( Point3<T> const & p0, Point3<T> const & p1 )
{
T k0 = p0._v[0]*p1._v[0];
T k1 = p0._v[1]*p1._v[1];
T k2 = p0._v[2]*p1._v[2];
int exp0,exp1,exp2;
frexp( double(k0), &exp0 );
frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );
if( exp0<exp1 )
{
if(exp0<exp2)
return (k1+k2)+k0;
else
return (k0+k1)+k2;
}
else
{
if(exp1<exp2)
return(k0+k2)+k1;
else
return (k0+k1)+k2;
}
}
// Returns 2*AreaTri/(MaxEdge^2), range [0.0, 0.866]
// e.g. halfsquare: 1/2, Equitri sqrt(3)/2, ecc
// Modificata il 7/sep/00 per evitare l'allocazione temporanea di variabili
template<class T>
T Quality( Point3<T> const &p0, Point3<T> const & p1, Point3<T> const & p2)
{
Point3<T> d10=p1-p0;
Point3<T> d20=p2-p0;
Point3<T> d12=p1-p2;
Point3<T> x = d10^d20;
T a = Norm( x );
if(a==0) return 0; // Area zero triangles have surely quality==0;
T b = SquaredNorm( d10 );
T t = b;
t = SquaredNorm( d20 ); if ( b<t ) b = t;
t = SquaredNorm( d12 ); if ( b<t ) b = t;
assert(b!=0.0);
return a/b;
}
// Return the value of the face normal (internal use only)
template<class T>
Point3<T> Normal(const Point3<T> & p0, const Point3<T> & p1, const Point3<T> & p2)
{
return ((p1 - p0) ^ (p2 - p0));
}
// Return the value of the face normal (internal use only)
template<class T>
Point3<T> NormalizedNormal(const Point3<T> & p0, const Point3<T> & p1, const Point3<T> & p2)
{
return ((p1 - p0) ^ (p2 - p0)).Normalize();
}
template<class T>
Point3<T> Jitter(Point3<T> &n, T RadAngle)
{
Point3<T> rnd(1.0 - 2.0*T(rand())/RAND_MAX, 1.0 - 2.0*T(rand())/RAND_MAX, 1.0 - 2.0*T(rand())/RAND_MAX);
rnd*=Sin(RadAngle);
return (n+rnd).Normalize();
}
// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
template<class T>
T PSDist( const Point3<T> & p,
const Point3<T> & v1,
const Point3<T> & v2,
Point3<T> & q )
{
Point3<T> e = v2-v1;
T t = ((p-v1)*e)/e.SquaredNorm();
if(t<0) t = 0;
else if(t>1) t = 1;
q = v1+e*t;
return Distance(p,q);
}
typedef Point3<short> Point3s;
typedef Point3<int> Point3i;
typedef Point3<float> Point3f;
typedef Point3<double> Point3d;
} // end namespace
#endif