1099 lines
38 KiB
C++
1099 lines
38 KiB
C++
/****************************************************************************
|
|
* VCGLib o o *
|
|
* Visual and Computer Graphics Library o o *
|
|
* _ O _ *
|
|
* Copyright(C) 2004 \/)\/ *
|
|
* Visual Computing Lab /\/| *
|
|
* ISTI - Italian National Research Council | *
|
|
* \ *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
/****************************************************************************
|
|
|
|
The sampling Class has a set of static functions, that you can call to sample the surface of a mesh.
|
|
Each function is templated on the mesh and on a Sampler object s.
|
|
Each function calls many time the sample object with the sampling point as parameter.
|
|
|
|
Sampler Classes and Sampling algorithms are independent.
|
|
Sampler classes exploits the sample that are generated with various algorithms.
|
|
For example, you can compute Hausdorff distance (that is a sampler) using various
|
|
sampling strategies (montecarlo, stratified etc).
|
|
|
|
****************************************************************************/
|
|
#ifndef __VCGLIB_POINT_SAMPLING
|
|
#define __VCGLIB_POINT_SAMPLING
|
|
|
|
#include <vcg/math/random_generator.h>
|
|
#include <vcg/complex/trimesh/closest.h>
|
|
#include <vcg/space/index/spatial_hashing.h>
|
|
#include <vcg/complex/trimesh/stat.h>
|
|
#include <vcg/complex/trimesh/update/topology.h>
|
|
#include <vcg/space/box2.h>
|
|
namespace vcg
|
|
{
|
|
namespace tri
|
|
{
|
|
|
|
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
|
|
/// Most of the sampling classes call the AddFace method with the face containing the sample and its barycentric coord.
|
|
/// Beside being an example of how to write a sampler it provides a simple way to use the various sampling classes.
|
|
// For example if you just want to get a vector with positions over the surface You have just to write
|
|
//
|
|
// vector<Point3f> myVec;
|
|
// TrivialSampler<MyMesh> ts(myVec)
|
|
// SurfaceSampling<MyMesh, TrivialSampler<MyMesh> >::Montecarlo(M, ts, SampleNum);
|
|
//
|
|
//
|
|
|
|
template <class MeshType>
|
|
class TrivialSampler
|
|
{
|
|
public:
|
|
typedef typename MeshType::CoordType CoordType;
|
|
typedef typename MeshType::VertexType VertexType;
|
|
typedef typename MeshType::FaceType FaceType;
|
|
|
|
TrivialSampler()
|
|
{
|
|
sampleVec = new std::vector<CoordType>();
|
|
vectorOwner=true;
|
|
};
|
|
|
|
TrivialSampler(std::vector<CoordType> &Vec)
|
|
{
|
|
sampleVec = &Vec;
|
|
sampleVec->clear();
|
|
vectorOwner=false;
|
|
};
|
|
|
|
~TrivialSampler()
|
|
{
|
|
if(vectorOwner) delete sampleVec;
|
|
}
|
|
|
|
private:
|
|
std::vector<CoordType> *sampleVec;
|
|
bool vectorOwner;
|
|
public:
|
|
|
|
void AddVert(const VertexType &p)
|
|
{
|
|
sampleVec->push_back(p.cP());
|
|
}
|
|
void AddFace(const FaceType &f, const CoordType &p)
|
|
{
|
|
sampleVec->push_back(f.P(0)*p[0] + f.P(1)*p[1] +f.P(2)*p[2] );
|
|
}
|
|
|
|
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &)
|
|
{
|
|
// Retrieve the color of the sample from the face f using the barycentric coord p
|
|
// and write that color in a texture image at position tp[0],tp[1]
|
|
}
|
|
}; // end class TrivialSampler
|
|
|
|
template <class MetroMesh, class VertexSampler>
|
|
class SurfaceSampling
|
|
{
|
|
typedef typename MetroMesh::CoordType CoordType;
|
|
typedef typename MetroMesh::ScalarType ScalarType;
|
|
typedef typename MetroMesh::VertexType VertexType;
|
|
typedef typename MetroMesh::VertexPointer VertexPointer;
|
|
typedef typename MetroMesh::VertexIterator VertexIterator;
|
|
typedef typename MetroMesh::FacePointer FacePointer;
|
|
typedef typename MetroMesh::FaceIterator FaceIterator;
|
|
typedef typename MetroMesh::FaceType FaceType;
|
|
typedef typename MetroMesh::FaceContainer FaceContainer;
|
|
|
|
typedef typename vcg::SpatialHashTable<FaceType, ScalarType> MeshSHT;
|
|
typedef typename vcg::SpatialHashTable<FaceType, ScalarType>::CellIterator MeshSHTIterator;
|
|
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> MontecarloSHT;
|
|
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator MontecarloSHTIterator;
|
|
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> SampleSHT;
|
|
typedef typename vcg::SpatialHashTable<VertexType, ScalarType>::CellIterator SampleSHTIterator;
|
|
|
|
public:
|
|
|
|
static math::MarsenneTwisterRNG &SamplingRandomGenerator()
|
|
{
|
|
static math::MarsenneTwisterRNG rnd;
|
|
return rnd;
|
|
}
|
|
|
|
// Returns an integer random number in the [0,i-1] interval using the improve Marsenne-Twister method.
|
|
static unsigned int RandomInt(unsigned int i)
|
|
{
|
|
return (SamplingRandomGenerator().generate(0) % i);
|
|
}
|
|
|
|
// Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method.
|
|
static double RandomDouble01()
|
|
{
|
|
return SamplingRandomGenerator().generate01();
|
|
}
|
|
|
|
// Returns a random number in the [0,1] real interval using the improved Marsenne-Twister.
|
|
static double RandomDouble01closed()
|
|
{
|
|
return SamplingRandomGenerator().generate01closed();
|
|
}
|
|
|
|
static void AllVertex(MetroMesh & m, VertexSampler &ps)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
{
|
|
if(!(*vi).IsD())
|
|
{
|
|
ps.AddVert(*vi);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Sample the vertices in a weighted way. Each vertex has a probability of being chosen
|
|
/// that is proportional to its quality.
|
|
/// It assumes that you are asking a number of vertices smaller than nv;
|
|
/// Algorithm:
|
|
/// 1) normalize quality so that sum q == 1;
|
|
/// 2) shuffle vertices.
|
|
/// 3) for each vertices choose it if rand > thr;
|
|
|
|
static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
ScalarType qSum = 0;
|
|
VertexIterator vi;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD())
|
|
qSum += (*vi).Q();
|
|
|
|
ScalarType samplePerUnit = sampleNum/qSum;
|
|
ScalarType floatSampleNum =0;
|
|
std::vector<VertexPointer> vertVec;
|
|
FillAndShuffleVertexPointerVector(m,vertVec);
|
|
|
|
std::vector<bool> vertUsed(m.vn,false);
|
|
|
|
int i=0; int cnt=0;
|
|
while(cnt < sampleNum)
|
|
{
|
|
if(vertUsed[i])
|
|
{
|
|
floatSampleNum += vertVec[i]->Q() * samplePerUnit;
|
|
int vertSampleNum = (int) floatSampleNum;
|
|
floatSampleNum -= (float) vertSampleNum;
|
|
|
|
// for every sample p_i in T...
|
|
if(vertSampleNum > 1)
|
|
{
|
|
ps.AddVert(*vertVec[i]);
|
|
cnt++;
|
|
vertUsed[i]=true;
|
|
}
|
|
}
|
|
i = (i+1)%m.vn;
|
|
}
|
|
}
|
|
|
|
/// Sample the vertices in a uniform way. Each vertex has a probability of being chosen
|
|
/// that is proportional to the area it represent.
|
|
static void VertexAreaUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
|
if(!(*vi).IsD())
|
|
(*vi).Q() = 0;
|
|
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
ScalarType areaThird = DoubleArea(*fi)/6.0;
|
|
(*fi).V(0).Q()+=areaThird;
|
|
(*fi).V(1).Q()+=areaThird;
|
|
(*fi).V(2).Q()+=areaThird;
|
|
}
|
|
|
|
VertexWeighted(m,ps,sampleNum);
|
|
}
|
|
|
|
static void FillAndShuffleFacePointerVector(MetroMesh & m, std::vector<FacePointer> &faceVec)
|
|
{
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD()) faceVec.push_back(&*fi);
|
|
|
|
assert((int)faceVec.size()==m.fn);
|
|
|
|
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
|
std::random_shuffle(faceVec.begin(),faceVec.end(), p_myrandom);
|
|
}
|
|
static void FillAndShuffleVertexPointerVector(MetroMesh & m, std::vector<VertexPointer> &vertVec)
|
|
{
|
|
VertexIterator vi;
|
|
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
|
if(!(*vi).IsD()) vertVec.push_back(&*vi);
|
|
|
|
assert((int)vertVec.size()==m.vn);
|
|
|
|
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
|
std::random_shuffle(vertVec.begin(),vertVec.end(), p_myrandom);
|
|
}
|
|
|
|
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
|
|
static void VertexUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
if(sampleNum>=m.vn) {
|
|
AllVertex(m,ps);
|
|
return;
|
|
}
|
|
|
|
std::vector<VertexPointer> vertVec;
|
|
FillAndShuffleVertexPointerVector(m,vertVec);
|
|
|
|
for(int i =0; i< sampleNum; ++i)
|
|
ps.AddVert(*vertVec[i]);
|
|
}
|
|
|
|
|
|
static void FaceUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
if(sampleNum>=m.fn) {
|
|
AllFace(m,ps);
|
|
return;
|
|
}
|
|
|
|
std::vector<FacePointer> faceVec;
|
|
FillAndShuffleFacePointerVector(m,faceVec);
|
|
|
|
for(int i =0; i< sampleNum; ++i)
|
|
ps.AddFace(*faceVec[i],Barycenter(*faceVec[i]));
|
|
}
|
|
|
|
static void AllFace(MetroMesh & m, VertexSampler &ps)
|
|
{
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
|
if(!(*fi).IsD())
|
|
{
|
|
ps.AddFace(*fi,Barycenter(*fi));
|
|
}
|
|
}
|
|
|
|
|
|
static void AllEdge(MetroMesh & m, VertexSampler &ps)
|
|
{
|
|
// Edge sampling.
|
|
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
|
|
std::vector< SimpleEdge > Edges;
|
|
typename std::vector< SimpleEdge >::iterator ei;
|
|
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges);
|
|
|
|
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
|
{
|
|
Point3f interp(0,0,0);
|
|
interp[ (*ei).z ]=.5;
|
|
interp[((*ei).z+1)%3]=.5;
|
|
ps.AddFace(*(*ei).f,interp);
|
|
}
|
|
}
|
|
|
|
// Regular Uniform Edge sampling
|
|
// Each edge is subdivided in a number of pieces proprtional to its lenght
|
|
// Sample are choosen without touching the vertices.
|
|
|
|
static void EdgeUniform(MetroMesh & m, VertexSampler &ps,int sampleNum, bool sampleFauxEdge=true)
|
|
{
|
|
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
|
|
std::vector< SimpleEdge > Edges;
|
|
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges,sampleFauxEdge);
|
|
// First loop compute total edge lenght;
|
|
float edgeSum=0;
|
|
typename std::vector< SimpleEdge >::iterator ei;
|
|
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
|
edgeSum+=Distance((*ei).v[0]->P(),(*ei).v[1]->P());
|
|
|
|
//qDebug("Edges %i edge sum %f",Edges.size(),edgeSum);
|
|
float sampleLen = edgeSum/sampleNum;
|
|
//qDebug("EdgesSamples %i Sampling Len %f",sampleNum,sampleLen);
|
|
float rest=0;
|
|
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
|
{
|
|
float len = Distance((*ei).v[0]->P(),(*ei).v[1]->P());
|
|
float samplePerEdge = floor((len+rest)/sampleLen);
|
|
rest = (len+rest) - samplePerEdge * sampleLen;
|
|
float step = 1.0/(samplePerEdge+1);
|
|
for(int i=0;i<samplePerEdge;++i)
|
|
{
|
|
Point3f interp(0,0,0);
|
|
interp[ (*ei).z ]=step*(i+1);
|
|
interp[((*ei).z+1)%3]=1.0-step*(i+1);
|
|
ps.AddFace(*(*ei).f,interp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Generate the barycentric coords of a random point over a single face,
|
|
// with a uniform distribution over the triangle.
|
|
// It uses the parallelogram folding trick.
|
|
static CoordType RandomBaricentric()
|
|
{
|
|
CoordType interp;
|
|
interp[1] = RandomDouble01();
|
|
interp[2] = RandomDouble01();
|
|
if(interp[1] + interp[2] > 1.0)
|
|
{
|
|
interp[1] = 1.0 - interp[1];
|
|
interp[2] = 1.0 - interp[2];
|
|
}
|
|
|
|
assert(interp[1] + interp[2] <= 1.0);
|
|
interp[0]=1.0-(interp[1] + interp[2]);
|
|
return interp;
|
|
}
|
|
|
|
static void StratifiedMontecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|
{
|
|
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
|
ScalarType samplePerAreaUnit = sampleNum/area;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
// Montecarlo sampling.
|
|
double floatSampleNum = 0.0;
|
|
|
|
FaceIterator fi;
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
if(!(*fi).IsD())
|
|
{
|
|
// compute # samples in the current face (taking into account of the remainders)
|
|
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
|
|
int faceSampleNum = (int) floatSampleNum;
|
|
|
|
// for every sample p_i in T...
|
|
for(int i=0; i < faceSampleNum; i++)
|
|
ps.AddFace(*fi,RandomBaricentric());
|
|
floatSampleNum -= (double) faceSampleNum;
|
|
}
|
|
}
|
|
|
|
static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|
{
|
|
typedef std::pair<ScalarType, FacePointer> IntervalType;
|
|
std::vector< IntervalType > intervals (m.fn+1);
|
|
FaceIterator fi;
|
|
int i=0;
|
|
intervals[i]=std::make_pair(0,FacePointer(0));
|
|
// First loop: build a sequence of consecutive segments proportional to the triangle areas.
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
if(!(*fi).IsD())
|
|
{
|
|
intervals[i+1]=std::make_pair(intervals[i].first+0.5*DoubleArea(*fi), &*fi);
|
|
++i;
|
|
}
|
|
ScalarType meshArea = intervals.back().first;
|
|
for(i=0;i<sampleNum;++i)
|
|
{
|
|
ScalarType val = meshArea * RandomDouble01();
|
|
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
|
|
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
|
|
typename std::vector<IntervalType>::iterator it = lower_bound(intervals.begin(),intervals.end(),std::make_pair(val,FacePointer(0)) );
|
|
assert(it != intervals.end());
|
|
assert(it != intervals.begin());
|
|
assert( (*(it-1)).first <val );
|
|
assert( (*(it)).first >= val);
|
|
ps.AddFace( *(*it).second, RandomBaricentric() );
|
|
}
|
|
}
|
|
|
|
static ScalarType WeightedArea(FaceType f)
|
|
{
|
|
ScalarType averageQ = ( f.V(0)->Q() + f.V(1)->Q() + f.V(2)->Q() ) /3.0;
|
|
return DoubleArea(f)*averageQ/2.0;
|
|
}
|
|
|
|
/// Compute a sampling of the surface that is weighted by the quality
|
|
/// the area of each face is multiplied by the average of the quality of the vertices.
|
|
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
|
|
static void WeightedMontecarlo(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|
{
|
|
assert(tri::HasPerVertexQuality(m));
|
|
|
|
ScalarType weightedArea = 0;
|
|
FaceIterator fi;
|
|
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
|
if(!(*fi).IsD())
|
|
weightedArea += WeightedArea(*fi);
|
|
|
|
ScalarType samplePerAreaUnit = sampleNum/weightedArea;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
// Montecarlo sampling.
|
|
double floatSampleNum = 0.0;
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
if(!(*fi).IsD())
|
|
{
|
|
// compute # samples in the current face (taking into account of the remainders)
|
|
floatSampleNum += WeightedArea(*fi) * samplePerAreaUnit;
|
|
int faceSampleNum = (int) floatSampleNum;
|
|
|
|
// for every sample p_i in T...
|
|
for(int i=0; i < faceSampleNum; i++)
|
|
ps.AddFace(*fi,RandomBaricentric());
|
|
|
|
floatSampleNum -= (double) faceSampleNum;
|
|
}
|
|
}
|
|
|
|
|
|
// Subdivision sampling of a single face.
|
|
// return number of added samples
|
|
|
|
static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
|
|
{
|
|
// recursive face subdivision.
|
|
if(sampleNum == 1)
|
|
{
|
|
// ground case.
|
|
CoordType SamplePoint;
|
|
if(randSample)
|
|
{
|
|
CoordType rb=RandomBaricentric();
|
|
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
|
|
}
|
|
else SamplePoint=((v0+v1+v2)/3.0f);
|
|
|
|
CoordType SampleBary;
|
|
InterpolationParameters(*fp,SamplePoint,SampleBary[0],SampleBary[1],SampleBary[2]);
|
|
ps.AddFace(*fp,SampleBary);
|
|
return 1;
|
|
}
|
|
|
|
int s0 = sampleNum /2;
|
|
int s1 = sampleNum-s0;
|
|
assert(s0>0);
|
|
assert(s1>0);
|
|
|
|
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
|
|
ScalarType w1 = 1.0-w0;
|
|
// compute the longest edge.
|
|
double maxd01 = SquaredDistance(v0,v1);
|
|
double maxd12 = SquaredDistance(v1,v2);
|
|
double maxd20 = SquaredDistance(v2,v0);
|
|
int res;
|
|
if(maxd01 > maxd12)
|
|
if(maxd01 > maxd20) res = 0;
|
|
else res = 2;
|
|
else
|
|
if(maxd12 > maxd20) res = 1;
|
|
else res = 2;
|
|
|
|
int faceSampleNum=0;
|
|
// break the input triangle along the midpoint of the longest edge.
|
|
CoordType pp;
|
|
switch(res)
|
|
{
|
|
case 0 : pp = v0*w0 + v1*w1;
|
|
faceSampleNum+=SingleFaceSubdivision(s0,v0,pp,v2,ps,fp,randSample);
|
|
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
|
|
break;
|
|
case 1 : pp = v1*w0 + v2*w1;
|
|
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
|
|
faceSampleNum+=SingleFaceSubdivision(s1,v0,pp,v2,ps,fp,randSample);
|
|
break;
|
|
case 2 : pp = v0*w0 + v2*w1;
|
|
faceSampleNum+=SingleFaceSubdivision(s0,v0,v1,pp,ps,fp,randSample);
|
|
faceSampleNum+=SingleFaceSubdivision(s1,pp,v1,v2,ps,fp,randSample);
|
|
break;
|
|
}
|
|
return faceSampleNum;
|
|
}
|
|
|
|
|
|
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
|
|
static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum, bool randSample)
|
|
{
|
|
|
|
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
|
ScalarType samplePerAreaUnit = sampleNum/area;
|
|
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
|
|
std::vector<FacePointer> faceVec;
|
|
FillAndShuffleFacePointerVector(m,faceVec);
|
|
|
|
double floatSampleNum = 0.0;
|
|
int faceSampleNum;
|
|
// Subdivision sampling.
|
|
typename std::vector<FacePointer>::iterator fi;
|
|
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
|
|
{
|
|
// compute # samples in the current face.
|
|
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
|
|
faceSampleNum = (int) floatSampleNum;
|
|
if(faceSampleNum>0)
|
|
faceSampleNum = SingleFaceSubdivision(faceSampleNum,(**fi).V(0)->cP(), (**fi).V(1)->cP(), (**fi).V(2)->cP(),ps,*fi,randSample);
|
|
floatSampleNum -= (double) faceSampleNum;
|
|
}
|
|
}
|
|
|
|
|
|
// Similar Triangles sampling.
|
|
// Skip vertex and edges
|
|
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
|
|
|
|
static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge)
|
|
{
|
|
int n_samples=0;
|
|
int i, j;
|
|
float segmentNum=n_samples_per_edge -1 ;
|
|
float segmentLen = 1.0/segmentNum;
|
|
// face sampling.
|
|
for(i=1; i < n_samples_per_edge-1; i++)
|
|
for(j=1; j < n_samples_per_edge-1-i; j++)
|
|
{
|
|
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
|
|
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
|
|
n_samples++;
|
|
ps.AddFace(*fp,sampleBary);
|
|
}
|
|
return n_samples;
|
|
}
|
|
static int SingleFaceSimilarDual(FacePointer fp, VertexSampler &ps, int n_samples_per_edge, bool randomFlag)
|
|
{
|
|
int n_samples=0;
|
|
float i, j;
|
|
float segmentNum=n_samples_per_edge -1 ;
|
|
float segmentLen = 1.0/segmentNum;
|
|
// face sampling.
|
|
for(i=0; i < n_samples_per_edge-1; i++)
|
|
for(j=0; j < n_samples_per_edge-1-i; j++)
|
|
{
|
|
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
|
|
CoordType V0((i+0)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+0)*segmentLen) ) ;
|
|
CoordType V1((i+1)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+0)*segmentLen) ) ;
|
|
CoordType V2((i+0)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+1)*segmentLen) ) ;
|
|
n_samples++;
|
|
if(randomFlag) {
|
|
CoordType rb=RandomBaricentric();
|
|
ps.AddFace(*fp, V0*rb[0]+V1*rb[1]+V2*rb[2]);
|
|
} else ps.AddFace(*fp,(V0+V1+V2)/3.0);
|
|
|
|
if( j < n_samples_per_edge-i-2 )
|
|
{
|
|
CoordType V3((i+1)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+1)*segmentLen) ) ;
|
|
n_samples++;
|
|
if(randomFlag) {
|
|
CoordType rb=RandomBaricentric();
|
|
ps.AddFace(*fp, V3*rb[0]+V1*rb[1]+V2*rb[2]);
|
|
} else ps.AddFace(*fp,(V3+V1+V2)/3.0);
|
|
}
|
|
}
|
|
return n_samples;
|
|
}
|
|
|
|
// Similar sampling
|
|
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
|
|
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
|
|
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
|
|
// 1) you have already sampled both edges and vertices
|
|
// 2) you are not going to take samples on edges and vertices.
|
|
//
|
|
// In the first case you have to consider only internal vertices of the subdivided triangles (to avoid multiple sampling of edges and vertices).
|
|
// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of points on an edge (vertex included)
|
|
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
|
|
// into 9 smaller triangles and you get (1*2)/2 == 1 only a single internal point.
|
|
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
|
|
// from which you get:
|
|
//
|
|
// 5 + sqrt( 1 + 8N )
|
|
// k = -------------------
|
|
// 2
|
|
//
|
|
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
|
|
// So if you want N samples in a triangle, the number <k> of points on an edge (vertex included) should be simply:
|
|
// k = 1 + sqrt(N)
|
|
// examples:
|
|
// N = 4 -> k = 3
|
|
// N = 9 -> k = 4
|
|
|
|
|
|
|
|
//template <class MetroMesh>
|
|
//void Sampling<MetroMesh>::SimilarFaceSampling()
|
|
static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dualFlag, bool randomFlag)
|
|
{
|
|
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
|
ScalarType samplePerAreaUnit = sampleNum/area;
|
|
|
|
// Similar Triangles sampling.
|
|
int n_samples_per_edge;
|
|
double n_samples_decimal = 0.0;
|
|
FaceIterator fi;
|
|
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
{
|
|
// compute # samples in the current face.
|
|
n_samples_decimal += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
|
|
int n_samples = (int) n_samples_decimal;
|
|
if(n_samples>0)
|
|
{
|
|
// face sampling.
|
|
if(dualFlag)
|
|
{
|
|
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); // original for non dual case
|
|
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
|
|
} else {
|
|
n_samples_per_edge = (int)(sqrt((double)n_samples) +1.0);
|
|
n_samples = SingleFaceSimilarDual(&*fi,ps, n_samples_per_edge,randomFlag);
|
|
}
|
|
}
|
|
n_samples_decimal -= (double) n_samples;
|
|
}
|
|
}
|
|
|
|
|
|
// Rasterization fuction
|
|
// Take a triangle
|
|
// T deve essere una classe funzionale che ha l'operatore ()
|
|
// con due parametri x,y di tipo S esempio:
|
|
// class Foo { public void operator()(int x, int y ) { ??? } };
|
|
|
|
|
|
|
|
static void SingleFaceRaster(FaceType &f, VertexSampler &ps, const Point2<ScalarType> & v0, const Point2<ScalarType> & v1, const Point2<ScalarType> & v2)
|
|
{
|
|
typedef ScalarType S;
|
|
// Calcolo bounding box
|
|
Box2i bbox;
|
|
|
|
if(v0[0]<v1[0]) { bbox.min[0]=int(v0[0]); bbox.max[0]=int(v1[0]); }
|
|
else { bbox.min[0]=int(v1[0]); bbox.max[0]=int(v0[0]); }
|
|
if(v0[1]<v1[1]) { bbox.min[1]=int(v0[1]); bbox.max[1]=int(v1[1]); }
|
|
else { bbox.min[1]=int(v1[1]); bbox.max[1]=int(v0[1]); }
|
|
if(bbox.min[0]>int(v2[0])) bbox.min[0]=int(v2[0]);
|
|
else if(bbox.max[0]<int(v2[0])) bbox.max[0]=int(v2[0]);
|
|
if(bbox.min[1]>int(v2[1])) bbox.min[1]=int(v2[1]);
|
|
else if(bbox.max[1]<int(v2[1])) bbox.max[1]=int(v2[1]);
|
|
|
|
// Calcolo versori degli spigoli
|
|
Point2<S> d10 = v1 - v0;
|
|
Point2<S> d21 = v2 - v1;
|
|
Point2<S> d02 = v0 - v2;
|
|
|
|
// Preparazione prodotti scalari
|
|
S b0 = (bbox.min[0]-v0[0])*d10[1] - (bbox.min[1]-v0[1])*d10[0];
|
|
S b1 = (bbox.min[0]-v1[0])*d21[1] - (bbox.min[1]-v1[1])*d21[0];
|
|
S b2 = (bbox.min[0]-v2[0])*d02[1] - (bbox.min[1]-v2[1])*d02[0];
|
|
// Preparazione degli steps
|
|
S db0 = d10[1];
|
|
S db1 = d21[1];
|
|
S db2 = d02[1];
|
|
// Preparazione segni
|
|
S dn0 = -d10[0];
|
|
S dn1 = -d21[0];
|
|
S dn2 = -d02[0];
|
|
// Rasterizzazione
|
|
|
|
double de = v0[0]*v1[1]-v0[0]*v2[1]-v1[0]*v0[1]+v1[0]*v2[1]-v2[0]*v1[1]+v2[0]*v0[1];
|
|
|
|
for(int x=bbox.min[0];x<=bbox.max[0];++x)
|
|
{
|
|
bool in = false;
|
|
S n0 = b0;
|
|
S n1 = b1;
|
|
S n2 = b2;
|
|
for(int y=bbox.min[1];y<=bbox.max[1];++y)
|
|
{
|
|
if( (n0>=0 && n1>=0 && n2>=0) || (n0<=0 && n1<=0 && n2<=0) )
|
|
{
|
|
CoordType baryCoord;
|
|
baryCoord[0] = double(-y*v1[0]+v2[0]*y+v1[1]*x-v2[0]*v1[1]+v1[0]*v2[1]-x*v2[1])/de;
|
|
baryCoord[1] = -double( x*v0[1]-x*v2[1]-v0[0]*y+v0[0]*v2[1]-v2[0]*v0[1]+v2[0]*y)/de;
|
|
baryCoord[2] = 1-baryCoord[0]-baryCoord[1];
|
|
|
|
ps.AddTextureSample(f, baryCoord, Point2i(x,y));
|
|
in = true;
|
|
} else if(in) break;
|
|
n0 += dn0;
|
|
n1 += dn1;
|
|
n2 += dn2;
|
|
}
|
|
b0 += db0;
|
|
b1 += db1;
|
|
b2 += db2;
|
|
}
|
|
}
|
|
|
|
// Generate a random point in volume defined by a box with uniform distribution
|
|
static CoordType RandomBox(vcg::Box3<ScalarType> box)
|
|
{
|
|
CoordType p = box.min;
|
|
p[0] += box.Dim()[0] * RandomDouble01();
|
|
p[1] += box.Dim()[1] * RandomDouble01();
|
|
p[2] += box.Dim()[2] * RandomDouble01();
|
|
return p;
|
|
}
|
|
|
|
// generate Poisson-disk sample using a set of pre-generated samples (with the Montecarlo algorithm)
|
|
// It always return a point.
|
|
static VertexPointer getPrecomputedMontecarloSample(Point3i &cell, MontecarloSHT & samplepool)
|
|
{
|
|
MontecarloSHTIterator cellBegin;
|
|
MontecarloSHTIterator cellEnd;
|
|
samplepool.Grid(cell, cellBegin, cellEnd);
|
|
return *cellBegin;
|
|
}
|
|
|
|
// check the radius constrain
|
|
static bool checkPoissonDisk(MetroMesh & vmesh, SampleSHT & sht, const Point3<ScalarType> & p, ScalarType radius)
|
|
{
|
|
// get the samples closest to the given one
|
|
std::vector<VertexType*> closests;
|
|
|
|
typedef VertTmark<MetroMesh> MarkerVert;
|
|
static MarkerVert mv;
|
|
|
|
Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius));
|
|
int nsamples = GridGetInBox(sht, mv, bb, closests);
|
|
|
|
ScalarType r2 = radius*radius;
|
|
for(int i=0; i<closests.size(); ++i)
|
|
if(SquaredDistance(p,closests[i]->cP()) < r2)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
struct PoissonDiskParam
|
|
{
|
|
PoissonDiskParam()
|
|
{
|
|
adaptiveRadiusFlag = false;
|
|
radiusVariance =1;
|
|
MAXLEVELS = 5;
|
|
invertQuality = false;
|
|
}
|
|
bool adaptiveRadiusFlag;
|
|
float radiusVariance;
|
|
bool invertQuality;
|
|
int MAXLEVELS;
|
|
};
|
|
|
|
static ScalarType ComputePoissonDiskRadius(MetroMesh &origMesh, int sampleNum)
|
|
{
|
|
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
|
|
// Manage approximately the PointCloud Case, use the half a area of the bbox.
|
|
// TODO: If you had the radius a much better approximation could be done.
|
|
if(meshArea ==0)
|
|
{
|
|
meshArea = (origMesh.bbox.DimX()*origMesh.bbox.DimY() +
|
|
origMesh.bbox.DimX()*origMesh.bbox.DimZ() +
|
|
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
|
|
}
|
|
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
|
|
return diskRadius;
|
|
}
|
|
|
|
static int ComputePoissonSampleNum(MetroMesh &origMesh, ScalarType diskRadius)
|
|
{
|
|
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
|
|
int sampleNum = meshArea / (diskRadius*diskRadius *M_PI *0.7) ; // 0.7 is a density factor
|
|
return sampleNum;
|
|
}
|
|
|
|
static void ComputePoissonSampleRadii(MetroMesh &sampleMesh, ScalarType diskRadius, ScalarType radiusVariance, bool invert)
|
|
{
|
|
VertexIterator vi;
|
|
std::pair<float,float> minmax = tri::Stat<MetroMesh>::ComputePerVertexQualityMinMax( sampleMesh);
|
|
float minRad = diskRadius / radiusVariance;
|
|
float maxRad = diskRadius * radiusVariance;
|
|
float deltaQ = minmax.second-minmax.first;
|
|
float deltaRad = maxRad-minRad;
|
|
for (vi = sampleMesh.vert.begin(); vi != sampleMesh.vert.end(); vi++)
|
|
{
|
|
(*vi).Q() = minRad + deltaRad*((invert ? minmax.second - (*vi).Q() : (*vi).Q() - minmax.first )/deltaQ);
|
|
}
|
|
}
|
|
|
|
// Trivial approach that puts all the samples in a UG and removes all the ones that surely do not fit the
|
|
static void PoissonDiskPruning(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
|
|
{
|
|
// spatial index of montecarlo samples - used to choose a new sample to insert
|
|
MontecarloSHT montecarloSHT;
|
|
// initialize spatial hash table for searching
|
|
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
|
|
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
|
|
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
|
|
|
|
// inflating
|
|
origMesh.bbox.Offset(cellsize);
|
|
|
|
int sizeX = vcg::math::Max(1.0f,origMesh.bbox.DimX() / cellsize);
|
|
int sizeY = vcg::math::Max(1.0f,origMesh.bbox.DimY() / cellsize);
|
|
int sizeZ = vcg::math::Max(1.0f,origMesh.bbox.DimZ() / cellsize);
|
|
Point3i gridsize(sizeX, sizeY, sizeZ);
|
|
#ifdef QT_VERSION
|
|
qDebug("PDS: radius %f Grid:(%i %i %i) ",diskRadius,sizeX,sizeY,sizeZ);
|
|
QTime tt; tt.start();
|
|
#endif
|
|
|
|
|
|
montecarloSHT.InitEmpty(origMesh.bbox, gridsize);
|
|
|
|
for (VertexIterator vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
|
|
montecarloSHT.Add(&(*vi));
|
|
|
|
montecarloSHT.UpdateAllocatedCells();
|
|
|
|
|
|
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
|
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
|
|
|
|
#ifdef QT_VERSION
|
|
qDebug("PDS: Completed creation of activeCells, %i cells (%i msec)", montecarloSHT.AllocatedCells.size(), tt.restart());
|
|
#endif
|
|
while(!montecarloSHT.AllocatedCells.empty())
|
|
{
|
|
int removedCnt=0;
|
|
for (size_t i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
|
|
{
|
|
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
|
|
VertexPointer sp = getPrecomputedMontecarloSample(montecarloSHT.AllocatedCells[i], montecarloSHT);
|
|
ps.AddVert(*sp);
|
|
removedCnt += montecarloSHT.RemoveInSphere(sp->cP(),diskRadius);
|
|
}
|
|
|
|
#ifdef QT_VERSION
|
|
qDebug("Removed %i samples in %i",removedCnt,tt.restart());
|
|
#endif
|
|
montecarloSHT.UpdateAllocatedCells();
|
|
}
|
|
}
|
|
|
|
/** Compute a Poisson-disk sampling of the surface.
|
|
* The radius of the disk is computed according to the estimated sampling density.
|
|
*
|
|
* This algorithm is an adaptation of the algorithm of White et al. :
|
|
*
|
|
* "Poisson Disk Point Set by Hierarchical Dart Throwing"
|
|
* K. B. White, D. Cline, P. K. Egbert,
|
|
* IEEE Symposium on Interactive Ray Tracing, 2007,
|
|
* 10-12 Sept. 2007, pp. 129-132.
|
|
*/
|
|
static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
|
|
{
|
|
|
|
// spatial index of montecarlo samples - used to choose a new sample to insert
|
|
MontecarloSHT montecarloSHTVec[5];
|
|
|
|
|
|
|
|
// initialize spatial hash table for searching
|
|
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
|
|
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
|
|
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
|
|
|
|
// inflating
|
|
origMesh.bbox.Offset(cellsize);
|
|
|
|
int sizeX = vcg::math::Max(1.0f,origMesh.bbox.DimX() / cellsize);
|
|
int sizeY = vcg::math::Max(1.0f,origMesh.bbox.DimY() / cellsize);
|
|
int sizeZ = vcg::math::Max(1.0f,origMesh.bbox.DimZ() / cellsize);
|
|
Point3i gridsize(sizeX, sizeY, sizeZ);
|
|
#ifdef QT_VERSION
|
|
qDebug("PDS: radius %f Grid:(%i %i %i) ",diskRadius,sizeX,sizeY,sizeZ);
|
|
QTime tt; tt.start();
|
|
#endif
|
|
|
|
// spatial hash table of the generated samples - used to check the radius constrain
|
|
SampleSHT checkSHT;
|
|
checkSHT.InitEmpty(origMesh.bbox, gridsize);
|
|
|
|
|
|
// sampling algorithm
|
|
// ------------------
|
|
//
|
|
// - generate millions of samples using montecarlo algorithm
|
|
// - extract a cell (C) from the active cell list (with probability proportional to cell's volume)
|
|
// - generate a sample inside C by choosing one of the contained pre-generated samples
|
|
// - if the sample violates the radius constrain discard it, and add the cell to the cells-to-subdivide list
|
|
// - iterate until the active cell list is empty or a pre-defined number of subdivisions is reached
|
|
//
|
|
|
|
int level = 0;
|
|
|
|
// initialize spatial hash to index pre-generated samples
|
|
montecarloSHTVec[0].InitEmpty(origMesh.bbox, gridsize);
|
|
// create active cell list
|
|
for (VertexIterator vi = montecarloMesh.vert.begin(); vi != montecarloMesh.vert.end(); vi++)
|
|
montecarloSHTVec[0].Add(&(*vi));
|
|
montecarloSHTVec[0].UpdateAllocatedCells();
|
|
|
|
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
|
|
if(pp.adaptiveRadiusFlag)
|
|
ComputePoissonSampleRadii(montecarloMesh, diskRadius, pp.radiusVariance, pp.invertQuality);
|
|
|
|
do
|
|
{
|
|
MontecarloSHT &montecarloSHT = montecarloSHTVec[level];
|
|
|
|
if(level>0)
|
|
{// initialize spatial hash with the remaining points
|
|
montecarloSHT.InitEmpty(origMesh.bbox, gridsize);
|
|
// create active cell list
|
|
for (typename MontecarloSHT::HashIterator hi = montecarloSHTVec[level-1].hash_table.begin(); hi != montecarloSHTVec[level-1].hash_table.end(); hi++)
|
|
montecarloSHT.Add((*hi).second);
|
|
montecarloSHT.UpdateAllocatedCells();
|
|
}
|
|
// shuffle active cells
|
|
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
|
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
|
|
#ifdef QT_VERSION
|
|
qDebug("PDS: Init of Hashing grid %i cells and %i samples (%i msec)", montecarloSHT.AllocatedCells.size(), montecarloSHT.hash_table.size(), tt.restart());
|
|
#endif
|
|
|
|
// generate a sample inside C by choosing one of the contained pre-generated samples
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
int removedCnt=montecarloSHT.hash_table.size();
|
|
int addedCnt=checkSHT.hash_table.size();
|
|
for (int i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
|
|
{
|
|
for(int j=0;j<4;j++)
|
|
{
|
|
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
|
|
|
|
// generate a sample chosen from the pre-generated one
|
|
typename MontecarloSHT::HashIterator hi = montecarloSHT.hash_table.find(montecarloSHT.AllocatedCells[i]);
|
|
|
|
if(hi==montecarloSHT.hash_table.end()) {break;}
|
|
VertexPointer sp = (*hi).second;
|
|
// vr spans between 3.0*r and r / 4.0 according to vertex quality
|
|
ScalarType sampleRadius = diskRadius;
|
|
if(pp.adaptiveRadiusFlag) sampleRadius = sp->Q();
|
|
if (checkPoissonDisk(*ps.m, checkSHT, sp->cP(), sampleRadius))
|
|
{
|
|
ps.AddVert(*sp);
|
|
montecarloSHT.RemoveCell(sp);
|
|
checkSHT.Add(sp);
|
|
break;
|
|
}
|
|
else
|
|
montecarloSHT.RemovePunctual(sp);
|
|
}
|
|
}
|
|
addedCnt = checkSHT.hash_table.size()-addedCnt;
|
|
removedCnt = removedCnt-montecarloSHT.hash_table.size();
|
|
|
|
// proceed to the next level of subdivision
|
|
// increase grid resolution
|
|
gridsize *= 2;
|
|
|
|
//
|
|
#ifdef QT_VERSION
|
|
qDebug("PDS: Pruning %i added %i and removed %i samples (%i msec)",level,addedCnt, removedCnt,tt.restart());
|
|
#endif
|
|
level++;
|
|
} while(level < 5);
|
|
}
|
|
|
|
//template <class MetroMesh>
|
|
//void Sampling<MetroMesh>::SimilarFaceSampling()
|
|
static void Texture(MetroMesh & m, VertexSampler &ps, int textureWidth, int textureHeight)
|
|
{
|
|
FaceIterator fi;
|
|
|
|
printf("Similar Triangles face sampling\n");
|
|
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
|
{
|
|
Point2f ti[3];
|
|
for(int i=0;i<3;++i)
|
|
ti[i]=Point2f((*fi).WT(i).U() * textureWidth, (*fi).WT(i).V() * textureHeight);
|
|
|
|
SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2]);
|
|
}
|
|
}
|
|
|
|
typedef GridStaticPtr<FaceType, ScalarType > TriMeshGrid;
|
|
|
|
class RRParam
|
|
{
|
|
public:
|
|
float offset;
|
|
float minDiag;
|
|
tri::FaceTmark<MetroMesh> markerFunctor;
|
|
TriMeshGrid gM;
|
|
};
|
|
|
|
static void RegularRecursiveOffset(MetroMesh & m, std::vector<Point3f> &pvec, ScalarType offset, float minDiag)
|
|
{
|
|
Box3<ScalarType> bb=m.bbox;
|
|
bb.Offset(offset*2.0);
|
|
|
|
RRParam rrp;
|
|
|
|
rrp.markerFunctor.SetMesh(&m);
|
|
|
|
rrp.gM.Set(m.face.begin(),m.face.end(),bb);
|
|
|
|
|
|
rrp.offset=offset;
|
|
rrp.minDiag=minDiag;
|
|
SubdivideAndSample(m, pvec, bb, rrp, bb.Diag());
|
|
}
|
|
|
|
static void SubdivideAndSample(MetroMesh & m, std::vector<Point3f> &pvec, const Box3<ScalarType> bb, RRParam &rrp, float curDiag)
|
|
{
|
|
Point3f startPt = bb.Center();
|
|
ScalarType bound;
|
|
|
|
ScalarType dist;
|
|
// Compute mesh point nearest to bb center
|
|
FaceType *nearestF=0;
|
|
float dist_upper_bound = curDiag+rrp.offset;
|
|
Point3f closestPt;
|
|
vcg::face::PointDistanceBaseFunctor<ScalarType> PDistFunct;
|
|
dist=dist_upper_bound;
|
|
nearestF = rrp.gM.GetClosest(PDistFunct,rrp.markerFunctor,startPt,dist_upper_bound,dist,closestPt);
|
|
curDiag /=2;
|
|
if(dist < dist_upper_bound)
|
|
{
|
|
if(curDiag/3 < rrp.minDiag) //store points only for the last level of recursion (?)
|
|
{
|
|
if(rrp.offset==0)
|
|
pvec.push_back(closestPt);
|
|
else
|
|
{
|
|
if(dist>rrp.offset) // points below the offset threshold cannot be displaced at the right offset distance, we can only make points nearer.
|
|
{
|
|
Point3f delta = startPt-closestPt;
|
|
pvec.push_back(closestPt+delta*(rrp.offset/dist));
|
|
}
|
|
}
|
|
}
|
|
if(curDiag < rrp.minDiag) return;
|
|
Point3f hs = (bb.max-bb.min)/2;
|
|
for(int i=0;i<2;i++)
|
|
for(int j=0;j<2;j++)
|
|
for(int k=0;k<2;k++)
|
|
SubdivideAndSample(m,pvec,
|
|
Box3f(Point3f( bb.min[0]+i*hs[0], bb.min[1]+j*hs[1], bb.min[2]+k*hs[2]),
|
|
Point3f(startPt[0]+i*hs[0],startPt[1]+j*hs[1],startPt[2]+k*hs[2])),rrp,curDiag);
|
|
|
|
}
|
|
}
|
|
}; // end class
|
|
|
|
|
|
} // end namespace tri
|
|
} // end namespace vcg
|
|
|
|
#endif
|
|
|