275 lines
7.7 KiB
C++
275 lines
7.7 KiB
C++
/****************************************************************************
|
|
* GCache *
|
|
* Author: Federico Ponchio *
|
|
* *
|
|
* Copyright(C) 2011 *
|
|
* Visual Computing Lab *
|
|
* ISTI - Italian National Research Council *
|
|
* *
|
|
* All rights reserved. *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
* for more details. *
|
|
* *
|
|
****************************************************************************/
|
|
|
|
#ifndef DD_HEAP_H
|
|
#define DD_HEAP_H
|
|
|
|
/**
|
|
Double ended heap inspired by
|
|
Min-Max Heaps and Generalized Priority Queues
|
|
M. D. ATKINSON,J.-R. SACK, N. SANTORO,and T. STROTHOTTE
|
|
|
|
This structure allows for quick extraction of biggest and smaller item out of a set
|
|
with linear reconstruction of the ordering.
|
|
|
|
DHeap exposes the public interface of vector. (push_back(), resize() etc.).
|
|
|
|
Compared to a stl heap, rebuild is 15% longer, extraction is 2x longer,
|
|
but you get both min and max extraction in log(n) time.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <vector>
|
|
|
|
|
|
template <class T>
|
|
class DHeap: public std::vector<T> {
|
|
public:
|
|
|
|
void push(const T& elt) {
|
|
push_back(elt);
|
|
bubbleUp(this->size()-1);
|
|
}
|
|
|
|
T &min() { return this->front(); } //root is smallest element
|
|
|
|
T popMin() {
|
|
T elt = this->front();
|
|
//move the last element to the root and
|
|
this->front() = this->back();
|
|
this->pop_back();
|
|
//enforce minmax heap property
|
|
trickleDownMin(0);
|
|
return elt;
|
|
}
|
|
|
|
//max is second element
|
|
T &max() {
|
|
if(this->size() == 1) return at(0);
|
|
return at(1);
|
|
}
|
|
|
|
T popMax() {
|
|
int p = 1;
|
|
if(this->size() == 1) p = 0;
|
|
T elt = at(p);
|
|
//max is replaced with last item.
|
|
at(p) = this->back();
|
|
this->pop_back();
|
|
trickleDownMax(p); //enforce minmax heap property
|
|
return elt;
|
|
}
|
|
|
|
//just reinsert all elements
|
|
void rebuild() {
|
|
for(unsigned int i = 0; i < this->size(); i++)
|
|
bubbleUp(i);
|
|
}
|
|
|
|
protected:
|
|
T &at(int n) { return std::vector<T>::at(n); }
|
|
|
|
int isMax(int e) const { return e & 1; }
|
|
int parentMin(int i) const { return (((i+2)>>2)<<1) - 2; }
|
|
int parentMax(int i) const { return (((i+2)>>2)<<1) - 1; }
|
|
int leftChildMin(int i) const { return (((i+2)>>1)<<2) -2; }
|
|
int leftChildMax(int i) const { return (((i+2)>>1)<<2) -1; }
|
|
|
|
void swap(int a, int b) { T tmp = at(a); at(a) = at(b); at(b) = tmp; }
|
|
|
|
//returns smallest elemennt of children intervals (or self if no children)
|
|
int smallestChild(int i) {
|
|
int l = leftChildMin(i);
|
|
if(l >= this->size()) return i; //no children, return self
|
|
|
|
int r = l+2; //right child
|
|
if(r < this->size() && at(r) < at(l))
|
|
return r;
|
|
return l;
|
|
}
|
|
//return biggest children or self if no children
|
|
int greatestChild(int i) {
|
|
int l = leftChildMax(i);
|
|
if(l >= this->size()) return i; //no children, return self
|
|
|
|
int r = l+2; //right child
|
|
if(r < this->size() && at(r) > at(l))
|
|
return r;
|
|
return l;
|
|
}
|
|
|
|
//all stuff involving swaps could be optimized perofming circular swaps
|
|
// but you mantain the code after :)
|
|
void trickleDownMin(int i) {
|
|
while(1) {
|
|
|
|
//find smallest child
|
|
unsigned int m = leftChildMin(i);
|
|
if(m >= this->size()) break;
|
|
unsigned int r = m+2;
|
|
if(r < this->size() && at(r) < at(m))
|
|
m = r;
|
|
|
|
if(at(m) < at(i)) { //if child is smaller swap
|
|
swap(i, m);
|
|
i = m; //check swapped children
|
|
} else //no swap? finish
|
|
break;
|
|
|
|
m = i+1; //enforce order in interval
|
|
if(m >= this->size()) break;
|
|
if(at(m) < at(i))
|
|
swap(i, m);
|
|
}
|
|
}
|
|
|
|
void trickleDownMax(int i) {
|
|
while(1) {
|
|
|
|
//find greatest child
|
|
unsigned int m = leftChildMax(i);
|
|
if(m >= this->size()) break;
|
|
unsigned int r = m+2;
|
|
if(r < this->size() && at(r) > at(m))
|
|
m = r;
|
|
|
|
if(at(m) > at(i)) {
|
|
swap(i, m);
|
|
i = m;
|
|
} else
|
|
break;
|
|
|
|
m = i-1; //enforce order in interval
|
|
if(m >= this->size()) break;
|
|
if(at(m) > at(i)) {
|
|
swap(i, m);
|
|
}
|
|
}
|
|
}
|
|
|
|
void bubbleUpMin(int i) {
|
|
while(1) {
|
|
int m = parentMin(i);
|
|
if(m < 0) break;
|
|
if(at(m) > at(i)) {
|
|
swap(i, m);
|
|
i = m;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
void bubbleUpMax(int i) {
|
|
while(1) {
|
|
int m = parentMax(i);
|
|
if(m < 0) break;
|
|
if(at(m) < at(i)) {
|
|
swap(i, m);
|
|
i = m;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
void bubbleUp(int i) {
|
|
if(isMax(i)) {
|
|
int m = i-1;
|
|
if(at(m) > at(i)) {
|
|
swap(i, m);
|
|
bubbleUpMin(m);
|
|
} else
|
|
bubbleUpMax(i);
|
|
} else {
|
|
int m = parentMax(i);
|
|
if(m < 0) return;
|
|
if(at(m) < at(i)) {
|
|
swap(i, m);
|
|
bubbleUpMax(m);
|
|
} else
|
|
bubbleUpMin(i);//just reinsert all elements, (no push back necessary, of course
|
|
}
|
|
}
|
|
/* DEBUG */
|
|
public:
|
|
///check the double heap conditions are met, mainly for debugging purpouses
|
|
bool isHeap() { //checks everything is in order
|
|
int s = this->size();
|
|
for(int i = 0; i < s; i += 2) {
|
|
if(i+1 < s && at(i) > at(i+1)) return false;
|
|
int l = leftChildMin(i);
|
|
if(l < s && at(i) > at(l)) return false;
|
|
int r = l + 2;
|
|
if(r < s && at(i) > at(r)) return false;
|
|
}
|
|
for(int i = 1; i < s; i += 2) {
|
|
int l = leftChildMax(i);
|
|
if(l < s && at(i) < at(l)) return false;
|
|
int r = l + 2;
|
|
if(r < s && at(i) < at(r)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/** Same functionality as IHeap, but storing pointers instead of the objects */
|
|
|
|
template <class T>
|
|
class PtrDHeap {
|
|
private:
|
|
class Item {
|
|
public:
|
|
T *value;
|
|
Item(T *val): value(val) {}
|
|
bool operator<(const Item &i) const { return *value < *i.value; }
|
|
bool operator>(const Item &i) const { return *value > *i.value; }
|
|
};
|
|
DHeap<Item> heap;
|
|
|
|
public:
|
|
T *push(T *t) {
|
|
Item i(t);
|
|
heap.push(i);
|
|
return i.value;
|
|
}
|
|
void push_back(T *t) {
|
|
heap.push_back(Item(t));
|
|
}
|
|
int size() { return heap.size(); }
|
|
void resize(int n) { assert(n < (int)heap.size()); return heap.resize(n, Item(NULL)); }
|
|
void clear() { heap.clear(); }
|
|
T &min() { Item &i = heap.min(); return *i.value; }
|
|
T *popMin() { Item i = heap.popMin(); return i.value; }
|
|
|
|
T &max() { Item &i = heap.max(); return *i.value; }
|
|
T *popMax() { Item i = heap.popMax(); return i.value; }
|
|
|
|
void rebuild() { heap.rebuild(); }
|
|
T &operator[](int i) {
|
|
return *(heap[i].value);
|
|
}
|
|
Item &at(int i) { return heap[i]; }
|
|
bool isHeap() { return heap.isHeap(); }
|
|
};
|
|
|
|
#endif
|