vcglib/img/img_filter.h

389 lines
14 KiB
C++
Executable File

#ifndef IMG_FILTER_H_
#define IMG_FILTER_H_
// functions that operate on pixels
// in this file code readability is preferred over speed and memory optimizations
#include <math.h>
#include <vector>
#include <algorithm>
namespace img {
template<int Channels, typename ScalarType, bool Safe>
inline void normalize(Image<Channels,ScalarType,Safe> &image)
{
assert(image.isValid());
assert(image.attributes.hasRange(0,255));
if(Safe){
if(!image.isValid()) throw ImageException("Invalid image");
if(!image.attributes.hasRange(0,255)) throw ImageException("Invalid range attribute");
}
ScalarType max=maxValue(image);
ScalarType min=minValue(image);
ScalarType scale=255.0f/(max-min);
ScalarType* array = image.dataValues();
int length =image.dataValuesSize();
for(int offset=0;offset<length;offset++)
array[offset] = (array[offset]-min)*scale;
}
template<int Channels, typename ScalarType, bool Safe>
inline Image<Channels,ScalarType,Safe> getNormalized(const Image<Channels,ScalarType,Safe> &image)
{
Image<Channels,ScalarType,Safe> i(image);
normalize(i);
return i;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void convolution(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,const DestScalarType *matrix,int matrix_width,int matrix_height)
{
assert(source.isValid());
assert(matrix != NULL);
assert((matrix_width > 0) && ((matrix_width)%2 == 1));
assert((matrix_height > 0) && ((matrix_height)%2 == 1));
if(SrcSafe || DestSafe){
if(!source.isValid()) throw ImageException("Invalid image");
if( matrix == NULL) throw ImageException("NULL convolution matrix");
if( !((matrix_width > 0) && ((matrix_width)%2 == 1)) ) throw ImageException("Matrix width must be a positive odd number");
if( !((matrix_height > 0) && ((matrix_height)%2 == 1)) ) throw ImageException("Matrix height must be a positive odd number");
}
destination.setZero(source.width(),source.height());
destination.attributes=source.attributes;
int x_radius=(matrix_width-1)/2;
int y_radius=(matrix_height-1)/2;
// per ogni canale
for(int channel=0; channel < Channels ;channel++){ // canali immagine
// per ogni riga
for (int y = 0; y < source.height(); y++){ // righe immagine
// per ogni pixel nella riga
for (int x = 0; x < source.width(); x++){ // colonne immagine
DestScalarType sum=0.0f;
int offset=0;
for(int my = y-y_radius; my <= y+y_radius; my++) // righe matrice
for(int mx = x-x_radius; mx <= x+x_radius; mx++) //colonne matrice
sum += matrix[offset++] * static_cast<DestScalarType>(source.getValueAsClamped(mx,my,channel));
destination.setValue(x,y,channel,sum);
} // colonne immagine
} // righe immagine
} // canali immagine
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getConvolved(const Image<Channels,ScalarType,Safe> &image,const ScalarType *matrix,int matrix_width,int matrix_height)
{
Image<Channels,ScalarType,Safe> i;
convolution(image,i,matrix,matrix_width,matrix_height);
return i;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void boxFilter(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,int radius)
{
assert(radius > 0);
if(SrcSafe || DestSafe){
if(radius <= 0) throw ImageException("Nonpositive radius");
}
int matrix_side=2*radius+1;
int matrix_size=matrix_side*matrix_side;
DestScalarType* matrix=new DestScalarType[matrix_size];
DestScalarType val=1.0f/matrix_size;
for(int i=0; i<matrix_size; i++)
matrix[i]=val;
convolution(source,destination,matrix,matrix_side,matrix_side);
delete [] matrix;
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getBoxFiltered(const Image<Channels,ScalarType,Safe> &image,int radius)
{
Image<Channels,ScalarType,Safe> i;
boxFilter(image,i,radius);
return i;
}
template<typename ScalarType>
inline void _gaussian(const int &radius,const ScalarType &sigma,ScalarType * &matrix,int &matrix_side)
{
matrix_side=2*radius+1;
int matrix_size=matrix_side*matrix_side;
matrix=new ScalarType[matrix_size];
// calcolo la matrice
int offset=0;
const ScalarType c = -0.5f / (sigma*sigma);
for(int y = -radius;y <= radius; y++)
for(int x = -radius;x <= radius; x++)
matrix[offset++] = exp( (x*x+y*y)*c );
// porto la matrice a somma 1
ScalarType sum=0.0f;
for(int i=0;i<matrix_size;i++)
sum+=matrix[i];
for(int i=0;i<matrix_size;i++)
matrix[i]/=sum;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void GaussianSmooth(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,const int radius)
{
assert(radius > 0.0f);
if(SrcSafe || DestSafe){
if(radius <= 0.0f) throw ImageException("Nonpositive radius");
}
const DestScalarType sigma = radius/3.0f;
DestScalarType *matrix=NULL;
int matrix_side=0;
_gaussian(radius,sigma,matrix,matrix_side);
convolution(source,destination,matrix,matrix_side,matrix_side);
delete [] matrix;
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getGaussianSmoothed(const Image<Channels,ScalarType,Safe> &image,const int radius)
{
Image<Channels,ScalarType,Safe> i;
GaussianSmooth(image,i,radius);
return i;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void LaplacianFilter(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination)
{
DestScalarType *matrix=new DestScalarType[9];
matrix[0]= 0.0f; matrix[1]= 1.0f; matrix[2]= 0.0f;
matrix[3]= 1.0f; matrix[4]=-4.0f; matrix[5]= 1.0f;
matrix[6]= 0.0f, matrix[7]= 1.0f; matrix[8]= 0.0f;
convolution(source,destination,matrix,3,3);
delete [] matrix;
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getLaplacianFiltered(const Image<Channels,ScalarType,Safe> &image)
{
Image<Channels,ScalarType,Safe> i;
LaplacianFilter(image,i);
return i;
}
template<typename ScalarType>
inline void _laplacian_of_gaussian(const int &radius,const ScalarType &sigma,ScalarType * &matrix,int &matrix_side)
{
matrix_side=2*radius+1;
int matrix_size=matrix_side*matrix_side;
matrix=new ScalarType[matrix_size];
// calcolo la matrice
int offset=0;
const ScalarType c1 = -0.5f/(sigma*sigma);
ScalarType c;
for(int y = -radius;y <= radius; y++)
for(int x = -radius;x <= radius; x++){
c = (x*x+y*y) * c1;
matrix[offset++] = (1+c) * exp(c);
}
// porto la matrice a somma 1
ScalarType sum=0.0f;
for(int i=0;i<matrix_size;i++)
sum+=matrix[i];
for(int i=0;i<matrix_size;i++)
matrix[i]/=sum;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void LoGFilter(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,int radius)
{
assert(radius > 0.0f);
if(SrcSafe || DestSafe){
if(radius <= 0.0f) throw ImageException("Nonpositive radius");
}
DestScalarType *matrix=NULL;
int matrix_side=0;
DestScalarType sigma = radius/3.0f;
_laplacian_of_gaussian(radius,sigma,matrix,matrix_side);
convolution(source,destination,matrix,matrix_side,matrix_side);
delete [] matrix;
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getLoGFiltered(const Image<Channels,ScalarType,Safe> &image,int radius)
{
Image<Channels,ScalarType,Safe> i;
LoGFilter(image,i,radius);
return i;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void DoGFilter(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,int radius1,int radius2)
{
assert(radius1 > 0.0f);
assert(radius2 > 0.0f);
assert(radius2 > radius1);
if(SrcSafe || DestSafe){
if(radius1 <= 0.0f) throw ImageException("Nonpositive radius1");
if(radius2 <= 0.0f) throw ImageException("Nonpositive radius2");
if(radius2 <= radius1) throw ImageException("radius2 is less than radius1");
}
int matrix_side=0;
DestScalarType *m1=NULL,*m2=NULL;
const DestScalarType sigma1=radius1/3.0f;
const DestScalarType sigma2=radius2/3.0f;
// ottengo la prima gaussiana (col radius della seconda)
_gaussian(radius2,sigma1,m1,matrix_side);
// ottengo la seconda gaussiana
_gaussian(radius2,sigma2,m2,matrix_side);
int matrix_size=matrix_side*matrix_side;
// sottraggo alla prima gaussiana la seconda
for(int i=0;i<matrix_size;i++)
m1[i] -= m2[i];
// riporto la matrice a somma 1
DestScalarType sum=0.0f;
for(int i=0;i<matrix_size;i++)
sum+=m1[i];
for(int i=0;i<matrix_size;i++)
m1[i]/=sum;
convolution(source,destination,m1,matrix_side,matrix_side);
delete [] m1;
delete [] m2;
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getDoGFiltered(const Image<Channels,ScalarType,Safe> &image,int radius1,int radius2)
{
Image<Channels,ScalarType,Safe> i;
DoGFilter(image,i,radius1,radius2);
return i;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void UnsharpMask(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,int radius,float factor)
{
assert(radius > 0);
assert(factor > 0.0f);
if(SrcSafe || DestSafe){
if(radius <= 0.0f) throw ImageException("Nonpositive radius");
if(factor <= 0.0f) throw ImageException("Nonpositive factor");
}
// metto l'immagine smoothata in destination
GaussianSmooth(source,destination,radius);
DestScalarType* source_array = source.dataValues();
DestScalarType* destination_array = destination.dataValues();
int length = source.dataValuesSize();
// unsharpo destination in loco
for(int offset=0;offset<length;offset++)
destination_array[offset] = source_array[offset]+factor*(source_array[offset]-destination_array[offset]);
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getUnsharpMasked(const Image<Channels,ScalarType,Safe> &image,int radius,float factor)
{
Image<Channels,ScalarType,Safe> i;
UnsharpMask(image,i,radius,factor);
return i;
}
template<int Channels, typename SrcScalarType, bool SrcSafe,typename DestScalarType, bool DestSafe>
inline void medianFilter(const Image<Channels,SrcScalarType,SrcSafe> &source,Image<Channels,DestScalarType,DestSafe> &destination,int radius)
{
assert(source.isValid());
assert(radius > 0);
if(SrcSafe || DestSafe){
if(!source.isValid()) throw ImageException("Invalid image");
if(radius <= 0) throw ImageException("Nonpositive radius");
}
destination.setZero(source.width(),source.height());
destination.attributes=source.attributes;
// per ogni canale
for(int channel=0; channel < Channels;channel++){ // canali immagine
// per ogni riga
for (int y = 0; y < source.height(); y++){ // righe immagine
// per ogni pixel nella riga
for (int x = 0; x < source.width(); x++){ // colonne immagine
// memorizzo i valori dell'intorno
std::vector<DestScalarType> v;
for(int my = y-radius; my <= y+radius; my++) // righe intorno
for(int mx = x-radius; mx <= x+radius; mx++) //colonne intorno
if (source.isInside(mx,my))
v.push_back(static_cast<DestScalarType>(source.getValue(mx,my,channel)));
// ottengo la mediana
int s=v.size();
assert(s>0);
nth_element (v.begin(), v.begin()+(s/2), v.end());
DestScalarType median = *(v.begin()+(s/2));
if((s%2)==0) { // even s: mean of the 2 middle elements
nth_element (v.begin(), v.begin()+(s/2)+1, v.end());
median = ( *(v.begin()+(s/2)+1) + median ) /2.0f;
}
// aggiorno il valore alla mediana dell'intorno
destination.setValue(x,y,channel,median);
} // colonne immagine
} // righe immagine
} // canali immagine
}
template<int Channels, typename ScalarType, bool Safe> // get[filter]ed() functions constrain return type to be the same of the parameter
inline Image<Channels,ScalarType,Safe> getMedianFiltered(const Image<Channels,ScalarType,Safe> &image,int radius)
{
Image<Channels,ScalarType,Safe> i;
medianFilter(image,i,radius);
return i;
}
template<int Channels, typename ScalarType1, bool Safe1,typename ScalarType2, bool Safe2>
inline void channels_mean(const img::Image<Channels,ScalarType1,Safe1> &channels_image, img::Image<1,ScalarType2,Safe2> &mean_image)
{
assert(channels_image.isValid());
if(Safe1 || Safe2){
if(!channels_image.isValid()) throw img::ImageException("channels_image rgb image");
}
mean_image.setZero(channels_image.width(),channels_image.height());
mean_image.attributes=channels_image.attributes;
for (int y_coord = 0; y_coord < channels_image.height(); ++y_coord)
for (int x_coord = 0; x_coord < channels_image.width(); ++x_coord){
ScalarType2 sum = ScalarType2(0.0);
for (int channel=0; channel<Channels; ++channel)
sum += static_cast<ScalarType2>(channels_image.getValue(x_coord, y_coord, channel));
mean_image.setValue(x_coord, y_coord, 0, sum / ScalarType2(Channels) );
}
}
} //end namespace img
#endif /*IMG_FILTER_H_*/