vcglib/vcg/space/box.h

392 lines
11 KiB
C++

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.5 2004/03/05 17:51:28 tarini
Errorino "ScalarType" -> "S"
Revision 1.4 2004/03/03 14:32:13 cignoni
Yet another cr lf mismatch
Revision 1.3 2004/02/23 23:44:21 cignoni
cr lf mismatch
Revision 1.2 2004/02/19 15:40:56 cignoni
Added doxygen groups
Revision 1.1 2004/02/13 02:16:22 cignoni
First working release.
****************************************************************************/
#ifndef __VCGLIB_BOX
#define __VCGLIB_BOX
#include <vcg/space/point.h>
#include <vcg/space/space.h>
#include <vcg/math/linear.h>
namespace vcg {
/** \addtogroup space */
/*@{*/
/**
Templated class for 3D boxes.
This is the class for definition of a axis aligned box in 2D or 3D space.
Typically used as bounding boxes.
It is stored just as two Points (at the opposite vertices).
@param S (template parameter) Specifies the type of scalar used to represent coords.
*/
template <int N, class S>
class Box : public Space<N,S> , Linear<Box>
{
public:
typedef S ScalarType;
typedef Point<N,S> ParamType;
typedef Point<N,S> PointType;
enum {Dimension=N};
/// The scalar type
protected:
/// _min coordinate point
Point<3,S> _min;
/// _max coordinate point
Point<3,S> _max;
public:
inline const PointType &Max() const { return _max; }
inline PointType &Max() { return _max; }
inline const PointType &Min() const { return _min; }
inline PointType &Min() { return _min; }
/// The box constructor
inline Box() {
_min.X()= 1;_max.X()= -1;
_min.Y()= 1;_max.Y()= -1;
if (N>2) {_min.Z()= 1;_max.Z()= -1;}
}
/// Min Max constructor
inline Box( const PointType & mi, const PointType & ma ) { _min = mi; _max = ma; }
/// The box distructor
inline ~Box() { }
/// Operator to compare two boxes
inline bool operator == ( Box const & p ) const
{
return _min==p._min && _max==p._max;
}
/// Operator to dispare two boxes
inline bool operator != ( Box const & p ) const
{
return _min!=p._min || _max!=p._max;
}
/** Infaltes the box of a percentage..
@param s Scalar value. E.g if s=0.1 the box enlarges of 10% in every direction
if S==0.5 box doubles (+50% in every direction)
if S < 0 box shrinks
if S==0.5 box reduces to a point
*/
void Inflate( const S s )
{
Inflate( (_max-_min)*s );
}
/** Enlarges the box dimensions by k in every direction, with k = bbox.diag*s
*/
void InflateFix( const S s )
{
S k = Diag()*s;
if (N==2) Inflate( PointType (k,k));
if (N==3) Inflate( PointType (k,k,k));
}
/** Enlarges the box dimensions by a fixed delta.
@param delta Point in D space. If delta > 0 box enlarges. If delta < 0 box reduces.
*/
void Inflate( const PointType & delta )
{
_min -= delta;
_max += delta;
}
/// Initializing the box
void Set( const PointType & p )
{
_min = _max = p;
}
/// Set the box to a null value
void SetNull()
{
_min.X()= 1; _max.X()= -1;
_min.Y()= 1; _max.Y()= -1;
_min.Z()= 1; _max.Z()= -1;
}
/** Add two boxex:
Returns minimal box that contains both operands.
@param b The box to add
*/
void Add( Box const & b )
{
if(IsNull()) *this=b;
else
Add(_min); Add(_max);
}
/** Add a point to a box.
The box is modified is the added point is aoutside it.
@param p The point to add
*/
void Add( const PointType & p )
{
if(IsNull()) Set(p);
else
{
if(_min.X() > p.X()) _min.X() = p.X();
else if(_max.X() < p.X()) _max.X() = p.X();
if(_min.Y() > p.Y()) _min.Y() = p.Y();
else if(_max.Y() < p.Y()) _max.Y() = p.Y();
if (N>2) {
if(_min.Z() > p.Z()) _min.Z() = p.Z();
else if(_max.Z() < p.Z()) _max.Z() = p.Z();
};
}
}
/** Coputes intersection of Boxes: the minimal box containing both operands.
@param b The other operand
*/
void Intersect( const Box & b )
{
if(_min.X() < b._min.X()) _min.X() = b._min.X();
if(_min.Y() < b._min.Y()) _min.Y() = b._min.Y();
if (N>2) if(_min.Z() < b._min.Z()) _min.Z() = b._min.Z();
if(_max.X() > b._max.X()) _max.X() = b._max.X();
if(_max.Y() > b._max.Y()) _max.Y() = b._max.Y();
if (N>2) if(_max.Z() > b._max.Z()) _max.Z() = b._max.Z();
if(_min.X()>_max.X() || _min.Y()>_max.Y() ) SetNull();
else if (N>2) if (_min.Z()>_max.Z()) SetNull();
}
/** Traslalate the box.
@param p: the translation vector
*/
void Translate( const PointType & p )
{
_min += p;
_max += p;
}
/** Check wheter a point is inside box.
@param p The point
@returns True if inside, false otherwise
*/
bool IsIn( PointType const & p ) const
{
if (N==2) return (
_min.X() <= p.X() && p.X() <= _max.X() &&
_min.Y() <= p.Y() && p.Y() <= _max.Y()
);
if (N==3) return (
_min.X() <= p.X() && p.X() <= _max.X() &&
_min.Y() <= p.Y() && p.Y() <= _max.Y() &&
_min.Z() <= p.Z() && p.Z() <= _max.Z()
);
}
/** Check wheter a point is inside box, open at left and closed at right [min..max)
@param p The point 3D
@returns True if inside, false otherwise
*/
bool IsInEx( PointType const & p ) const
{
if (N==2) return (
_min.X() <= p.X() && p.X() < _max.X() &&
_min.Y() <= p.Y() && p.Y() < _max.Y()
);
if (N==3) return (
_min.X() <= p.X() && p.X() < _max.X() &&
_min.Y() <= p.Y() && p.Y() < _max.Y() &&
_min.Z() <= p.Z() && p.Z() < _max.Z()
);
}
/**
TODO: Move TO COLLIDE!!!
Verifica se due box collidono cioe' se hanno una intersezione non vuota. Per esempio
due box adiacenti non collidono.
@param b A box
@return True se collidoo, false altrimenti
*/
bool Collide(Box const &b)
{
return b._min.X()<_max.X() && b._max.X()>_min.X() &&
b._min.Y()<_max.Y() && b._max.Y()>_min.Y() &&
b._min.Z()<_max.Z() && b._max.Z()>_min.Z() ;
}
/** Controlla se il box e' nullo.
@return True se il box e' nullo, false altrimenti
*/
bool IsNull() const { return _min.X()>_max.X() || _min.Y()>_max.Y() || _min.Z()>_max.Z(); }
/** Controlla se il box e' vuoto.
@return True se il box e' vuoto, false altrimenti
*/
bool IsEmpty() const { return _min==_max; }
/// Restituisce la lunghezza della diagonale del box.
S Diag() const
{
return Distance(_min,_max);
}
/// Calcola il quadrato della diagonale del box.
S SquaredDiag() const
{
return SquaredDistance(_min,_max);
}
/// Calcola il centro del box.
PointType Center() const
{
return (_min+_max)/2;
}
/// Returns global coords of a local point expressed in [0..1]^3
PointType LocalToGlobal(PointType const & p) const{
return PointType(
_min[0] + p[0]*(_max[0]-_min[0]),
_min[1] + p[1]*(_max[1]-_min[1]),
_min[2] + p[2]*(_max[2]-_min[2]));
}
/// Returns local coords expressed in [0..1]^3 of a point in 3D
PointType GlobalToLocal(PointType const & p) const{
return PointType(
(p[0]-_min[0])/(_max[0]-_min[0]),
(p[1]-_min[1])/(_max[1]-_min[1]),
(p[2]-_min[2])/(_max[2]-_min[2])
);
}
/// Computes the Volume for the box.
inline S Volume() const
{
if (N==2) return (_max.X()-_min.X())*(_max.Y()-_min.Y());
if (N==3) return (_max.X()-_min.X())*(_max.Y()-_min.Y())*(_max.Z()-_min.Z());
}
/// Area() and Volume() are sinonims (a
inline S Area() const {
return Volume();
};
/// Compute box size.
PointType Size() const
{
return (_max-_min);
}
/// Compute box size X.
inline S SizeX() const { return _max.X()-_min.X();}
/// Compute box size Y.
inline S SizeY() const { return _max.Y()-_min.Y();}
/// Compute box size Z.
inline S SizeZ() const { static_assert(N>2); return _max.Z()-_min.Z();}
/** @name Linearity for boxes
**/
/// sets a point to Zero
inline void Zero()
{
_min.Zero();
_max.Zero();
}
inline Box operator + ( Box const & p) const
{
return Box(_min+p._min,_max+p._max);
}
inline Box operator - ( Box const & p) const
{
return Box(_min-p._min,_max-p._max);
}
inline Box operator * ( const S s ) const
{
return Box(_min*s,_max*s);
}
inline Box operator / ( const S s ) const
{
S inv=S(1.0)/s;
return Box(_min*inv,_max*inv);
}
inline Box & operator += ( Box const & p)
{
_min+=p._min; _max+=p._max; return *this;
}
inline Box & operator -= ( Box const & p)
{
_min-=p._min; _max-=p._max; return *this;
}
inline Box & operator *= ( const S s )
{
_min*=s; _max*=s; return *this;
}
inline Box & operator /= ( const S s )
{
S inv=S(1.0)/s;
_min*=s; _max*=s; return *this;
return *this;
}
inline Box operator - () const
{
return Box(-_min,-_max);
}
//@}
//@{
/** @name Iporters (for boxes in different spaces and with different scalar types)
**/
/// imports the box
template <int N0, class S0>
inline void Import( const Box<N0,S0> & b )
{ _max.Import( b._max );_min.Import( b._min );
}
template <int N0, class S0>
/// constructs a new ray importing it from an existing one
static Box Construct( const Box<N0,S0> & b )
{
return Box(PointType::Construct(b._min),PointType::Construct(b._max));
}
}; // end class definition
typedef Box<3,short> Box3s;
typedef Box<3,int> Box3i;
typedef Box<3,float> Box3f;
typedef Box<3,double> Box3d;
typedef Box<2,short> Box2s;
typedef Box<2,int> Box2i;
typedef Box<2,float> Box2f;
typedef Box<2,double> Box2d;
/*@}*/
} // end namespace
#endif